

ERNDIM DIAGNOSTIC PROFICIENCY TESTING FRANCE 2025 ANNUAL MEETING Madrid, 9 October 2025

Christine Vianey-Saban, Cécile Acquaviva

Certificate of participation 2024

- Certificates have been sent to the labs who sent reports for at least one of the two surveys
- Critical errors in 2024
 - No critical errors 😊
- Performance support letters
 - No performance support letters have been sent $\stackrel{\bigcirc}{\circ}$
- No answer to one survey means a score ≤ 50%.

Information from Executive Committee and Scientific Advisory Board - DPT

Scoring

- The scoring you received in the interim reports for 2025 is provisional: it will be discussed in November at the SAB meeting. The critical error(s) will be defined
- Results from each centre are scored by another scheme organizer. In 2025, results of DPT France will be scored by Joanne Croft (DPT UK). It changes every year
- The score for satisfactory performance is 17 points from the maximum of 24 (70%)

Website reporting (CSCQ)

- Selection of tests
 - Don't select a test if you will not perform it nor enter results
 - The evaluation program includes it in the report
- Results
 - Give quantitative data as much as possible
 - Enter the key metabolites with the evaluation in the tables even if you don't give quantitative data, and even if the analysis has been performed by your cluster lab
 - If the profile is normal: enter "Normal profile" in "Key metabolites"
 - If the analysis has been performed by a cluster lab, enter the result in the Results section, not in "Comments on diagnosis", your are responsible for the analyses performed by the cluster lab
 - Don't enter results in the "comments" window
- → Otherwise your results will not be included in the evaluation program

CSCQ website

Analyte	Method	Key Metabolite	Quant. result	Unit	Evaluation	Qual. result
Amino acid quantitative		Please specify key metabolite	*** *** *** ***	mmol/mol creat	To be entered	
Amino acid quantitative		Please specify key metabolite	अंद अंद अंद अंद अंद अंद	mmol/mol creat	To be entered	
Amino acid quantitative		Please specify key metabolite	340 340 340 340 340 340	mmol/mol creat	To be entered	
Amino acid quantitative		Please specify key metabolite	340 340 340 340 340 340	mmol/mol creat	To be entered	
Amino acid quantitative		Please specify key metabolite	340 340 340 340 340 340	mmol/mol creat	To be entered	
Amino acid quantitative		Please specify key metabolite	340 340 340 340 340 340	mmol/mol creat	To be entered	

Website reporting (CSCQ)

- Recommendations = advice for further investigation
 - Scored together with the interpretative score
 - Advice for treatment are not scored
 - Don't give advice for further investigation in "Comments on diagnosis": not included in the evaluation program

Reporting

Interim reports of Survey I and Survey 2

- Personalized (one per lab)
- Available on the CSCQ website as a pdf file: mail sent by CSCQ when it is available
- The scoring you received is provisional
- The scoring can be modified by the second reviewer or by the SAB

Annual report

- Personalized (one per lab)
- Will be issued before end of December 2025

DPT France Logistics

In 2025, 20 labs participated to the Diagnostic Proficiency Testing France Scheme (one participant canceled his registration)

Organizing Centre :
C.Vianey-Saban, C.Acquaviva
Maladies Héréditaires du Métabolisme
Centre de Biologie Est, CHU de Lyon
Bron, France

Participants

Country	Number of labs
France	8
Italy	5
Spain	4
Portugal	2
Netherlands	
Total	20

Tests required

- Amino acids
- Organic acids
- Oligosaccharides
- Mucopolysaccharides
- Purines & Pyrimidines
- Possibility of cluster labs. The lab who receives the samples is responsible for the results

Shipment of samples

2 surveys

- ▶ 2025-I : patient A, B and C
- 2025-2 : patient D, E and F

Mailing

- Samples were aliquoted and sent by CSCQ at room temperature. I mailing for the 2 surveys
- Samples were sent together with qualitative organic acids in urine and acylcarnitines in DBS

All labs received the samples in good conditions

- Custom problems in Spain and Italy have been solved: samples were sent by MCA (quantitative schemes)
- It seems that there is some problems with Portugal

Origin of samples

- Patient A: Mucopolysaccharidosis type VI This sample has been sent to all labs participating to the DPT scheme in Europe
- Patient B : Hawkinsinuria
- Patient C : MSUD
- Patient D : GMI gangliosidosis
- Patient E : Hyperoxaluria type II
- Patient F : Glutaric aciduria type I, low excretor

Samples have been provided by Dr Joachim Janda, QLOU Heidelberg scheme, Dr Cristiano Rizzo, Hospital Bambino Gesù, Rome, Dr Anne-Frédérique Dessein, CHU de Lille and the Scientific Advisors of DPT France

Timetable of the scheme

•	February 5	Shipment of samples of Survey I and Survey 2 by CSCQ
•	March 17	Clinical data available on CSCQ website and start analysis of samples A, B, C (Survey 1)
•	March 31	Reminder for website submission
•	April 7	Deadline for result submission (Survey 1)
•	July I	Interim report of Survey I available on CSCQ website (sent to CSCQ by SA on May I)
•	June 2	Clinical data available on the CSCQ website and start analysis of samples D, E, F (Survey 2)
•	June 16	Reminder for website submission
•	June 23	Deadline for result submission (Survey 2).
•	August ?	Interim report of Survey 2 available on CSCQ website (sent to CSCQ by SA on July 31)
•	October 9	Meeting of participants in Madrid during the ERNDIM meeting
•	November 28	SAB meeting: definition of critical errors
•	December 2025	Annual Report with definitive scoring

Scoring of results

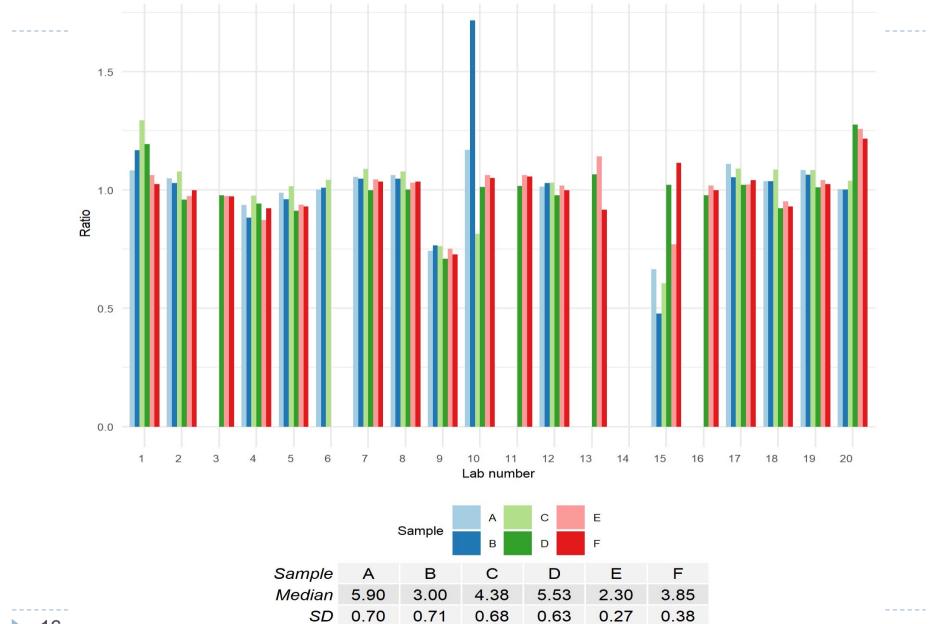
	Analytical performance	Correct results of the appropriate tests	2
A		Partially correct or non-standard methods	1
		Unsatisfactory of misleading	0
	Interpretation of results	Good, diagnosis is established	2
ı		Helpful but incomplete	1
		Misleading / wrong diagnosis	0

Recommendations are not scored separately: eventually with interpretation

Participation to the scheme

Survey I

19 labs


► Survey 2

20 labs

20 registered labs

I lab could not submit results for the first survey because of non-payment of the 2024 invoice

Creatinine: ratio to median

Creatinine determination

- Satisfying for most labs
- ▶ Lab I5 (same last year) and lab I0 had scattered results
- Lab 9 had low results
- Exclusion of 3 values for CV calculation
- Median values for creatinine

```
Patient A = 5.9 mmol/L
Patient B = 3.0 mmol/L
Patient C = 4.4 mmol/L
Patient D = 5.5 mmol/L
Patient E = 2.3 mmol/L
Patient F = 3.9 mmol/L
(CV = 11.9 %)
(CV = 11.7 %) exclusion of 2 wrong values
(CV = 12.5 %) exclusion of 1 wrong value
(CV = 11.2 %)
(CV = 11.7 %)
(CV = 11.7 %)
(CV = 9.9 %)
```

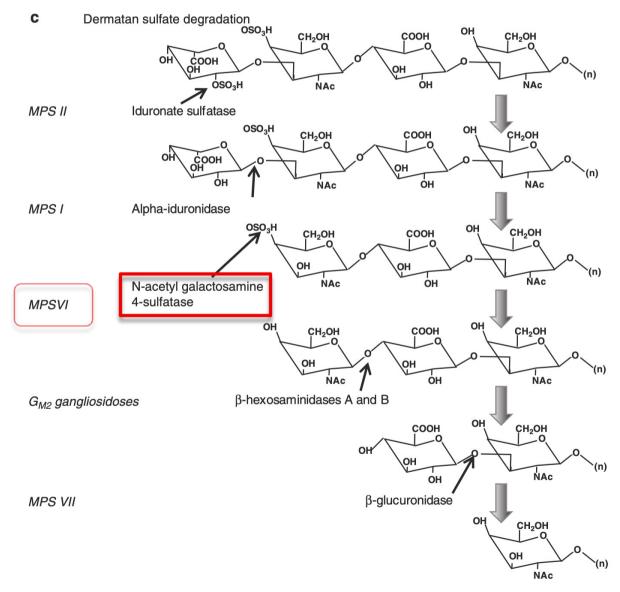
- ▶ All CV between 10% and 12.5%, but samples with relatively low creat
 - ► Interlab CV 2024 Special Assay urine = 5.5 % (n = 128)

Patient A – Mucolysaccharidosis type VI

Common sample distributed to all DPT centres. Will be discussed later this morning

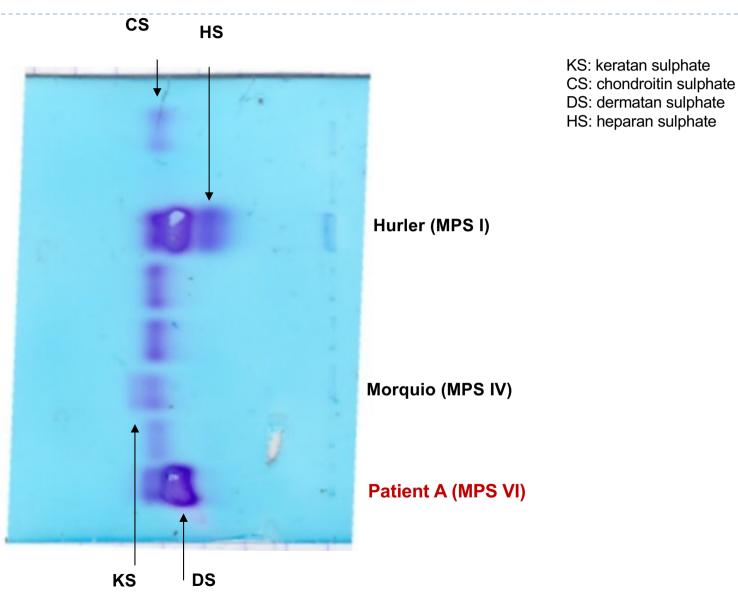
- ▶ 15-year-old male patient
- Normal pregnancy and delivery
- From 2 months to 6 years of age: frequent upper airways infections
- 3 years: pectus carinatum
- ▶ 10 years
 - Scoliosis with platyspondyly
 - Dorsal kyphosis
 - Narrow cervical canal
 - Decrease in visual and hearing acuity

Patient A – Mucolysaccharidosis type VI


▶ 15 years

- Normal intellectual development
- Arthrodesis TI0-TI2
- ▶ Height: +3 SD at I year of age, -1.5 SD at I5 years
- Urinary MPS analysis because of spine abnormalities and dysmorphic features
- Diagnosis of MPS VI confirmed by measurement of arylsulfatase B activity in leucocytes
- He is receiving enzyme replacement therapy every week

Mucopolysaccharidosis type VI


- Maroteaux-Lamy syndrome is a rare autosomal recessive IEM
- Due to arylsulphatase B deficiency (ARSB gene)
- Wide phenotypic spectrum (S Jones, F Wijburg, Inborn Metabolic Diseases Diagnostic & Treatment, 2016)
 - Usual signs: short stature, dysostosis multiplex, degenerative joint disease
 - Frequent signs: cardiac valve disease, hearing loss, obstructive sleep apnoea, corneal, clouding, carpal tunnel disease, and inguinal or umbilical hernia
 - Possible signs: cervical cord compression, communicating hydrocephalus, optic nerve atrophy and blindness
- Arylsulphatase B (N-acetylgalactosamine 4-sulphatase): lysosomal enzyme, removes 4-sulfate groups from the non-reducing end of chondroitin 4-sulfate and dermatan sulphate, and thereby regulates their degradation

Mucopolysaccharidosis type VI

•	Mo	st likely diagnosis	
	>	Mucopolysaccharidosis type VI MPS I, MPS II or MPS VI	8 I
	> > >	Mucopolysaccharidosis type IV MPS IVA Mucopolysaccharidosis	6 2 2
•	Alt	ernative diagnosis	
		MPS VI or MPS VII MPS I, MPS VI or MPS VII MPS I or MPS II MPS IV Oligosaccharidosis	2 2

	 GAGs quantification (17/19) Elevated No elevation (I using DMB assay, I using harmine assay) 	1 5 2
•	GAGs fractionation (17/19)	
	Increase in	
	Dermatan sulphate	13
	Chondroitin sulphate	9
	Heparan sulphate	6
	Keratan sulphate	Ι
•	Oligosaccharides (11/20)	
	No significant abnormality	9
	Slight increase of sialyl-oligosaccharides	2

•	 GAGs quantification (17/19) Elevated No elevation (I using DMB assay, I using harmine assay) 	15 2
•	GAGs fractionation (17/19) Increase in	
	Dermatan sulphate	13
	Chondroitin sulphate	9
	Heparan sulphate	6
	Keratan sulphate	I
•	Oligosaccharides (11/20)	
	No significant abnormality	9
	Slight increase of sialyl-oligosaccharides	2

Patient A: interim scoring

Analytical performance

- Increase in dermatan sulphate (score 2)
- Increase in GAGs quantification (score I)

Interpretation of results

- MPS VI as main diagnosis (score 2)
- Other or wrong MPS type, diagnosis according to clinical signs (score 1)

Patient A: interim scoring

Similar urine samples have been distributed in 2006 and 2015: the overall performance was better the previous years

	2006	2015	2025
Analytical performance	84 %	87 %	79 %
Interpretative performance	82 %	89 %	74 %
Overall performance	84 %	88 %	76 %

Patient B: Hawkinsinuria

- 21-year-old female patient
- Feeding difficulties and failure to thrive in infancy
- Evaluation at the age of 12 months revealed mild developmental delay and metabolic acidosis
- Today well
- At the time of sample collection, the patient was pregnant

Hawkinsinuria

- Very rare autosomal <u>dominant</u> IEM, not completely understood
- Clinical presentation
 - Failure to thrive and acidosis, but not in all affected infants
 - No symptoms after the first year of life
- Biochemical diagnosis
 - Amino acids
 - Hawkinsin (IEC): eluted between urea and threonine
 - Slight increase of tyrosine (in infancy)
 - Organic acids, increase in
 - Hawkinsin (2-cystenyl-1, 4-dihydroxycyclohexenylacetate)
 - 4-hydroxycyclohexylacetate (appears after infancy)
 - ▶ 4-hydroxyphenylacetate, 4-hydroxyphenyllactate, 4-hydroxyphenylpyruvate (in infancy)
- Metabolic derangement
 - Mutations in the 4-hydroxyphenylpyruvate dioxygenase gene (HPD) result in an altered HPD enzyme. Complete deficiency of this enzyme leads to tyrosinemia type III
 - Hawkinsin and 4-hydroxycyclohexylacetate are thought to derive from incomplete conversion of 4-hydroxyphenylpyruvate to homogentisate

Hawkinsinuria

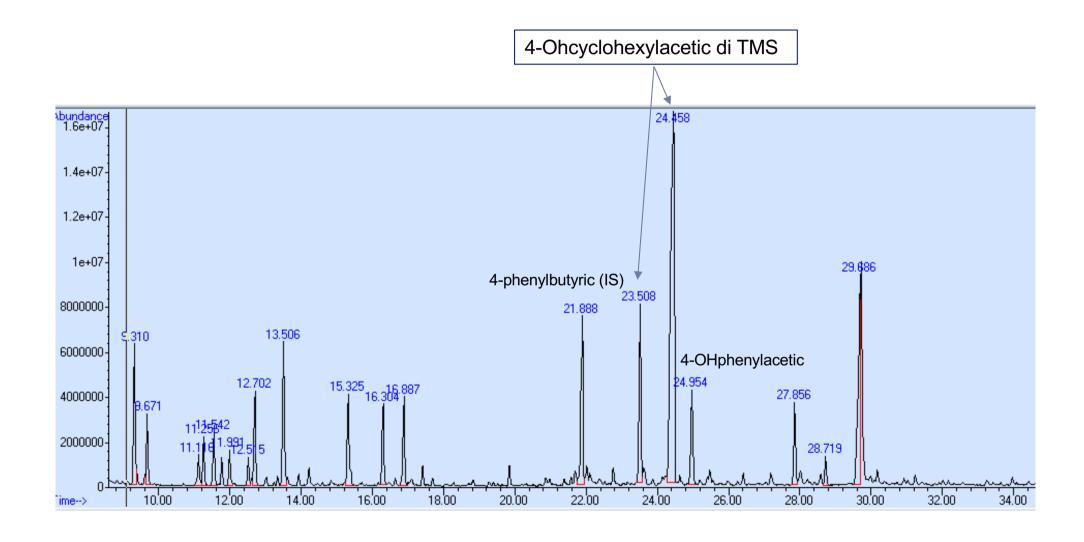
4-hydroxyphenylpyruvate dioxygenase deficiency

- Partial: Hawkinsinuria (AD)
- Complete: tyrosinemia type III (AR)

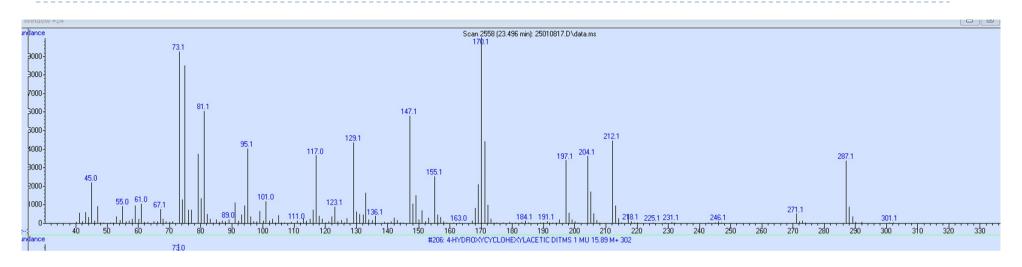
Phenylalanine Mitochondria **Tyrosine** Tyrosine (5) (1)4-Hydroxyphenylpyruvate 4-Hydroxyphenyllpyruvate Homogentisate 4-Hydroxyphenylactate (3) Maleylacetoacetate Succinylacetoacetate Fumarylacetoacetate **→** CO₂ 4 Succinylacetone Fumarate Acetoacetate 5-Aminolevulinic acid Porphobilinogen

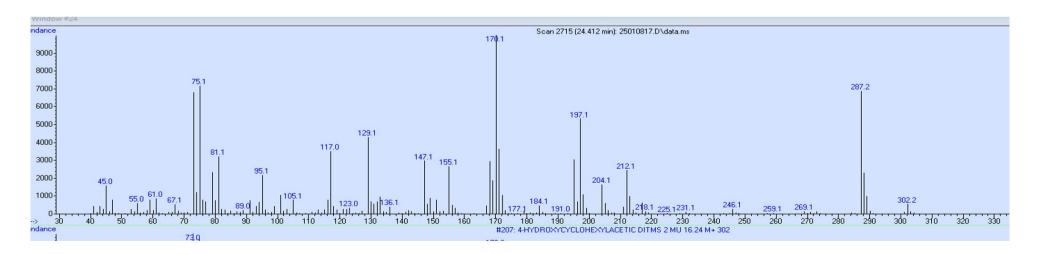
From Inborn Metabolic Diseases, Diagnosis & Treatment, 6th Edition

Patient B – Hawkinsinuria


Most likely diagnosis

	•	Hawkinsinuria	14
	•	Tyrosinemia type III	2
	•	Iminoglycinuria	2
	•	3HMG-CoA lyase deficiency	1
•	Alt	ernative diagnosis	
	•	Hyperprolinemia type I	2
	•	Serine biosynthesis disorder	1


Patient B – Hawkinsinuria


Organic acids (19/19) Increase in 4-hydroxycyclohexylacetic acid (cis and/or trans) 16 (562;660 mmol/mol creatinine; n = 2)No increase in 4-hydroxyphenylacetic acid 4 4-hydroxyphenyllactic acid 3 Amino acids (18/19) Increase in **Hawkinsin** Glycine 16 **Proline** 12 No increase in tyrosine

4-hydroxycyclohexylacetic acid

4-hydroxycyclohexylacetic acid

Hawkinsin

2-cystenyl-I, 4-dihydroxycyclohexenylacetatic acid

We could not find its mass spectrum and its elution time

We need your help!

Patient B: interim scoring

Analytical performance

Identification of 4-hydroxycyclohexylacetic acid (cis or trans) or Hawkinsin (2-cysteinyl-1,4-dihydroxycyclohexenylacetic acid) (score 2)

Interpretation of results

- Hawkinsinuria as main or alternative diagnosis (score 2)
- Tyrosinemia type III (score 1)

Patient B: interim scoring

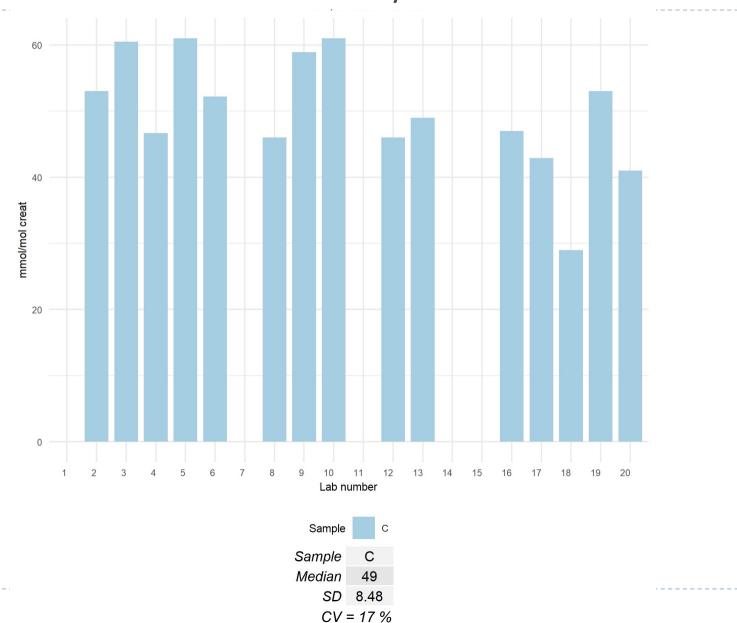
	Analytical performance	84 %
•	Interpretative performance	79 %
•	Overall performance	82 %

Patient C: MSUD

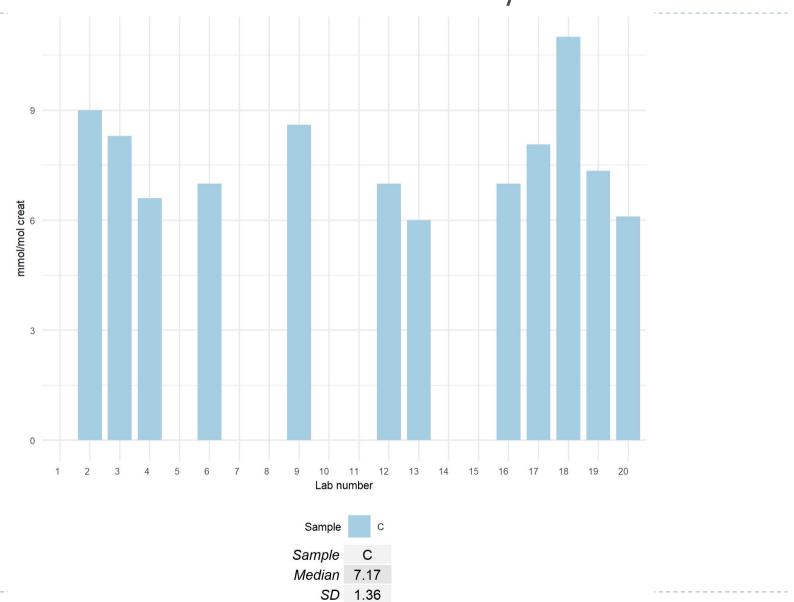
- 25-year-old adult female
- Revelation by digestive and neurological signs leading to a coma with seizures at 9 days of life, treated by phenobarbital, phenytoin and peritoneal dialysis
- The management has always been difficult since the patient has never accepted the low protein diet, leading to feeding difficulties
- A gastrostomy was placed at the age of 3 years
- The course of the disease was marked by numerous episodes of decompensation and the subsequent development of slight mental retardation
- She is waiting for liver transplant

Patient C: MSUD

	Most likely diagnosis	
	Maple Syrup Urine disease	18
	(leucinosis, branched-chain 2-ketoacid dehydrogenase	complex def.)
	Isovaleric aciduria	I
)	Alternative diagnosis	
	► E3 deficiency	2
	(dihydrolipoamide dehydrogenase deficiency)	

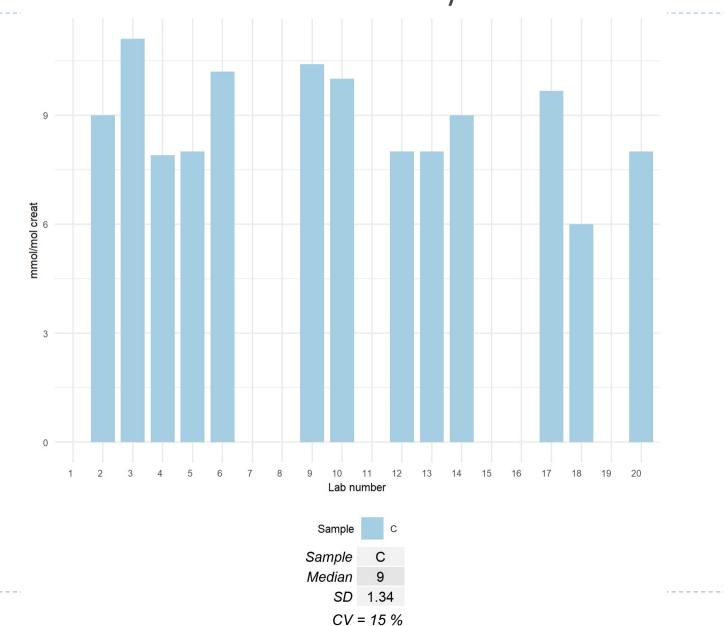

Patient C - MSUD

Amino acids (18/19)

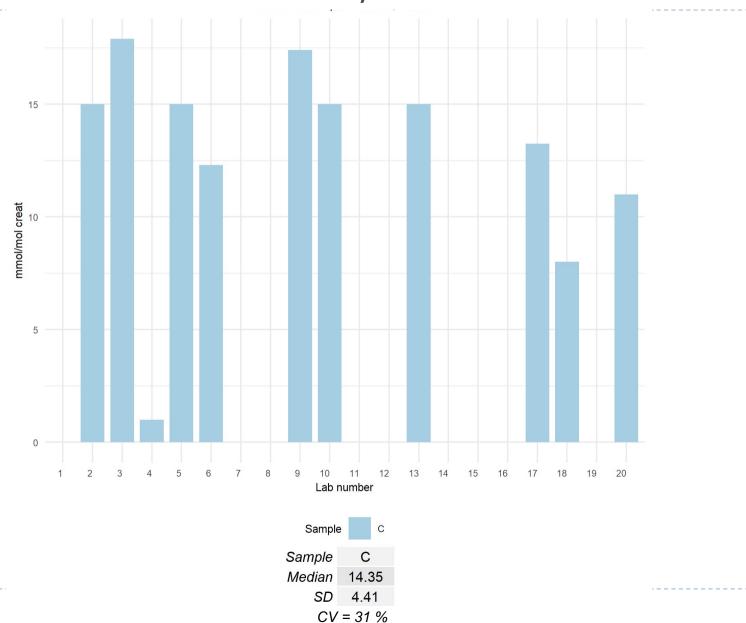

Increase in

Leucine (median = 49 mmol/mol creatinine; range : 29.0 – 61.0 ; n = 15)	15
Alloisoleucine (median = 7.2 mmol/mol creatinine; range : 6.0 – 11.0 ; n = 12)	14
<pre>Isoleucine (median = 9 mmol/mol creatinine; range : 6.0 - 11.1; n = 15)</pre>	13
Valine (median = 14.4 mmol/mol creatinine; range : 1.0 – 17.9 ; n = 12)	12
Normal profile (I IEC and I LC-MS/MS)	2

Patient C – Leucine mmol/mol creat



Patient C – Alloisoleucine mmol/mol creat



CV = 19 %

Patient C – Isoleucine mmol/mol creat

Patient C – Valine mmol/mol creat

Patient C - MSUD

Organic acids (19/19)

Increase in

	crease in	
•	2-ketoisocaproic acid	13
	(12;38;120 mmol/mol creatinine; n = 3)	
•	2-keto-3-methylvaleric	9
	(28; 90 mmol/mol creatinine; n = 2)	
•	2-ketoisovaleric acid	6
	(35 mmol/mol creatinine; n = 1)	
•	2-hydroxyisovaleric acid	16
	(median = 96 mmol/mol creatinine; range : $76 - 140$; n = 4)	
•	2-hydroxyisocaproic acid	9
	(4;40 mmol/mol creatinine; n = 2)	
•	2-hydroxy-3-methylvaleric acid	9
•	3-hydroxyisovaleric acid (isolated)	- 1

Patient C: interim scoring

Analytical performance

- Elevation of at least one branched-chain amino acid (alloisoleucine, leucine, isoleucine, valine) (score 1)
- ▶ Elevation of at least two branched-chain 2-keto or 2-hydroxyacids (2-ketoisocaproic, 2-ketoisovaleric, 2-keto-3-methylvaleric, 2-hydroxyisocaproic, 2-hydroxyisovaleric, 2-hydroxy-3-methylvaleric acids (score I)

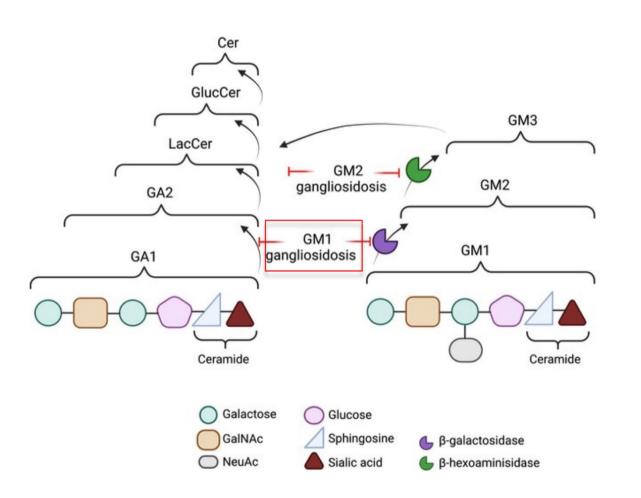
Interpretation of results

MSUD as main diagnosis (score 2)

Patient C: interim scoring

Similar urine samples have been distributed in 2003: the overall performance was slightly better the previous year

	2003	2025
Analytical performance	87 %	87 %
Interpretative performance	100 %	95 %
Overall performance	95 %	91 %


Patient D: GM1 gangliosidosis

- 9-year-old girl, born from unrelated parents
- She presented with mild intellectual disability, language disorder, hypotonia, facial dysmorphia, minor limb anomalies and walking difficulties
- The diagnosis was confirmed enzymatically and genetically at 9 years of age
 - Clinical exome: compound heterozygosity for 2 missense variants in GLB1 gene
 - Beta-galactosidase activity in leukocytes: reduced by 99%
- Results compatible with the pathological phenotype of the patient and the diagnosis of GMI gangliosidosis type II (late infantile/juvenile)

GM1 gangliosidosis

- Different clinical presentations
 - Severe neonatal form, with cardiomyopathy. Also a cause of hydrops fetalis
 - ▶ Early infantile form (type I): the more frequent. Early developmental delay, and neurological disease, hepatosplenomegaly, coarse features, Hurler-like bone changes. Death by 1-2 years of age
 - Late infantile variant (type II): slower course with loss of developmental milestones
 - Adult form (type III) : very rare, cerebellar dysfunction
- Due to a deficient activity of acid β-galactosidase (GLB1 gene): cleaves glycoconjugates containing a terminal β-galactosidic linkage and is necessary for the degradation of GM1 ganglioside, other galactose-containing glycosphingolipids or oligosaccharides, as well as keratan sulphate. Consequently, the more severe forms of the disease combine features of a neuronal lipidosis, a mucopolysaccharidosis and an oligosaccharidosis
- ▶ GLB1 gene is also mutated in Morquio type B (MPS IV B), with a completely different phenotype, indicating different substrate binding sites, protein folding-relevant sites, or subdomains in the enzyme

GM1 gangliosidosis

Caption

Catabolism of GM1 and GM2 gangliosides and other sphingolipids. GM1 ganglioside is metabolized to GM2 ganglioside by β -galactosidase and, subsequently, GM2 is converted to GM3 by β -hexosaminidase and/or GM2 activator protein (not pictured). Deficiencies in these enzymes lead to accumulation in these sphingolipids leading to GM1 or GM2 based on enzyme defect. Abbreviations: GalNAc, N-acetylgalactosamine; NeuAc, N-acetylneuraminic acid; GM1, GM1 ganglioside; GM2, GM2 ganglioside; GM3, GM3 ganglioside; GA1, GA1 ganglioside; GA2, GA2 ganglioside; LacCer, lactosylceramide; GlucCer, glucosylceramide; Cer, ceramide.

Content available from Clinical and Translational Science

viect to convright

This content is subject to copyright. <u>Terms and conditions</u> apply.

Patient D: GM1 gangliosidosis

Most likely diagnosis	
 GMI gangliosidosis (GMI type I, II or III, beta-galactosidase deficiency) 	13
Aspartylglucosaminuria	2
 Hyperphenylalaninaemia 	2
Mucopolysaccharidosis type I, II or VI	- 1
Creatine transporter deficiency	
No abnormality detected	
Alternative diagnosis	
MPS IVB (Morquio B)	4
Galactosialidosis	2
Another oligosaccharidosis	- 1
Hyperphenylalaninaemia	2
GAMT deficiency	
Creatine transporter deficiency	

Patient D: GM1 gangliosidosis

	Oligosaccharides (18/20)	
	Profile evocative of GMI gangliosidosis	13
	Profile evocative of aspartylglucosaminuria	2
	Normal profile	3
	(2 labs:TLC-1D-orcinol, 1 lab: MS/MS no separation)	
>	GAGs fractionation (10/20)	
	Normal profile	7
	Slight increase in keratan sulphate	2
	Increase in dermatan sulphate, traces heparan sulphate	I
•	GAGs quantification (14/20)	
	Normal quantification	14

Patient D: interim scoring

Analytical performance

- Oligosaccharide profile evocative of GMI gangliosidosis (score 2)
- Oligosaccharide profile evocative of aspartylglucosaminuria (score I)

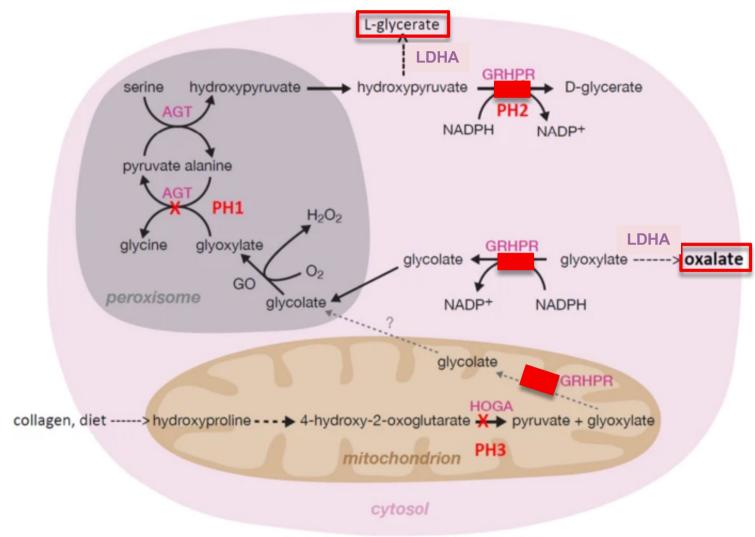
Interpretation of results

- ▶ GMI gangliosidosis as main diagnosis (score 2)
- Aspartylglucosaminuria or other lysosomal storage disorder(s) (score I)

Patient D: interim scoring

Similar urine samples have been distributed in 2015 and 2017: the overall performance was better the previous years

	2015	2017	2025
Analytical performance	78 %	84 %	70 %
Interpretative performance	80 %	92 %	72 %
Overall performance	79 %	88 %	71 %


Patient E: Hyperoxaluria type II

- 6-year-old boy
- Antenatal bilateral pyelectasis
- At birth: hyperechogenic kidneys and nephrocalcinosis
- ▶ 8 months: first episode of haematuria
- ▶ 13 months: Oxalic acid = 445 mmol/mol creat (controls: <120), normal excretion of glycolic acid
- ▶ 15 months:
 - ▶ Gene panel: compound heterozygosity for 2 variants in GRHPR gene
 - Organic acids: high increase in glyceric acid
 - Start treatment: potassium citrate and hyperhydration
- ▶ 4 years: introduction of stiripentol, an antiepileptic drug which has been shown to inhibit neuronal lactate dehydrogenase and to reduce hepatic oxalate production
- Today well under treatment

Hyperoxaluria type II

- Primary hyperoxaluria type II: rare autosomal recessive disorder
- Clinical course comparable but generally less severe as compared to primary hyperoxaluria type I
 - Nephrocalcinosis, nephrolithiasis, renal colic
 - Chronic kidney disease (CKD) and end stage renal failure (ESRF) occur less frequently, have not been reported in childhood but affects about 50% of adult patients
- Due to a defect in the glyoxylate reductase / hydroxypyruvate reductase (GR/HPR) activity (GRHPR gene)
- A single nucleotide deletion, c. 103delG, accounts for 31–35% of mutant alleles in hyperoxaluria type II, mainly restricted to those of Caucasian descent
- Lack of GR/HPR leads to an accumulation of glyoxylate and hydroxypyruvate, which are both metabolized by lactate dehydrogenase A to oxalate and L-glycerate, respectively

Hyperoxaluria type II

From PMID: 35695965

Patient E: Hyperoxaluria type II

Most likely diagnosis

- Hyperoxaluria type II
 (L-glyceric aciduria, glyoxalate/hydroxypyruvate reductase def.)
- Hyperoxaluria type I
- Alternative diagnosis
 - D-glyceric aciduria
 - Double compound hyperoxaluria type II & III

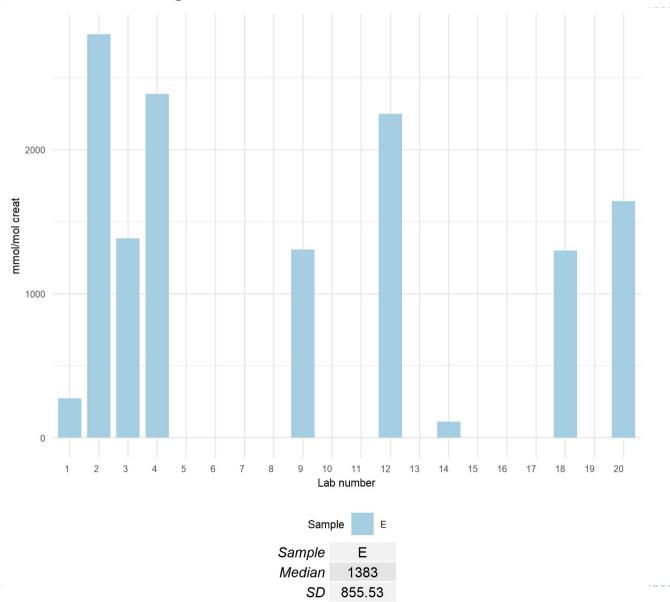
Patient E: Hyperoxaluria type II

Organic acids (20/20)

Glyceric acid
 (median = 1383 mmol/mol creatinine; range : 110 - 2800 ; n = 9)

• Oxalic acid
(00 - 105 - 100 5 - 156 - 200 - - - - 1/- - 1 - - - - - 5)

20


9

(99; 105; 109.5; 156; 800 mmol/mol creatinine: n = 5)

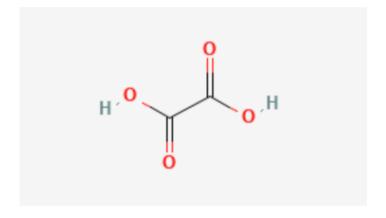
No increase in

- ▶ Glycolic acid (median = 42.5 mmol/mol creatinine; range : 28 – 169 ; n = 4)
- Description of the second of t
- Specific measurement of oxalic acid by Scientific Advisors
 - ▶ By GC/MC SID = 277 mmol/mol creat, controls: I7 I00

Patient E: Glyceric acid

Patient E: Hyperoxaluria type II

Organic acids (20/20)


Increase in

	Glyceric acid	20
	(median = $1383 \text{ mmol/mol creatinine}$; range : $110 - 2800 \text{ ; n = 9}$)	
•	Oxalic acid	9
	(99; 105; 109.5; 156; 800 mmol/mol creatinine: n = 5)	
Ν	o increase in	
•	Glycolic acid	9
	(median = 42.5 mmol/mol creatinine; range : $28 - 169$; n = 4)	
•	Oxalic acid	4

- Specific measurement of oxalic acid by Scientific Advisors
 - ▶ By GC/MC SID = 277 mmol/mol creat, controls: I7 I00

Patient E: Oxalic acid

- Oxalic acid is a polar compound that is poorly extracted by organic solvents such as ethylacetate
- In urine, it occurs mainly as calcium oxalate and precipitates at alkaline pH
- For an accurate measurement of oxalic acid
 - Urines must be acidified prior to extraction to solubilize oxalic acid
 - A stable isotope of oxalic acid must be added as internal standard, to normalize experimental variables such as extraction
- This probably explains why lot of labs did not report an increase in oxalic using a standard organic acid analysis

Patient E: interim scoring

Analytical performance

- Increase in glyceric acid (score I)
- Increase in oxalic acid (score I)

Interpretation of results

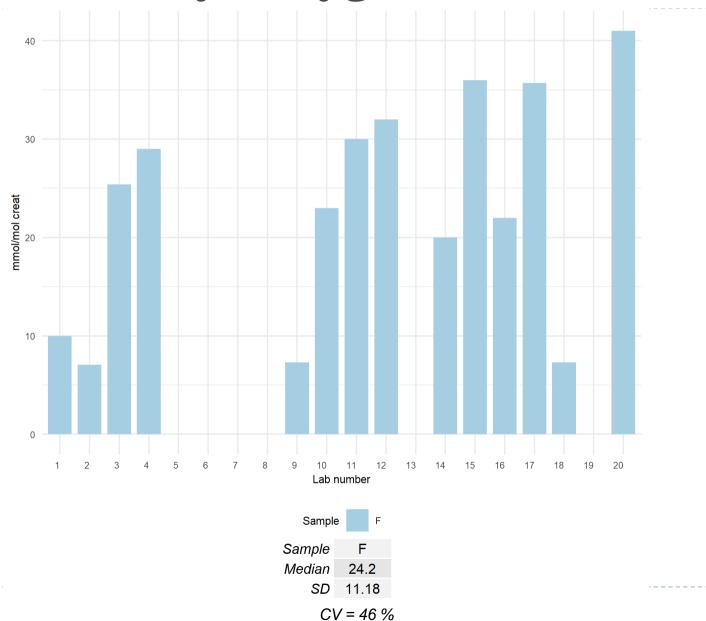
- Hyperoxaluria type II (score 2)
- Primary hyperoxaluria type I (score I)

Patient E: interim scoring

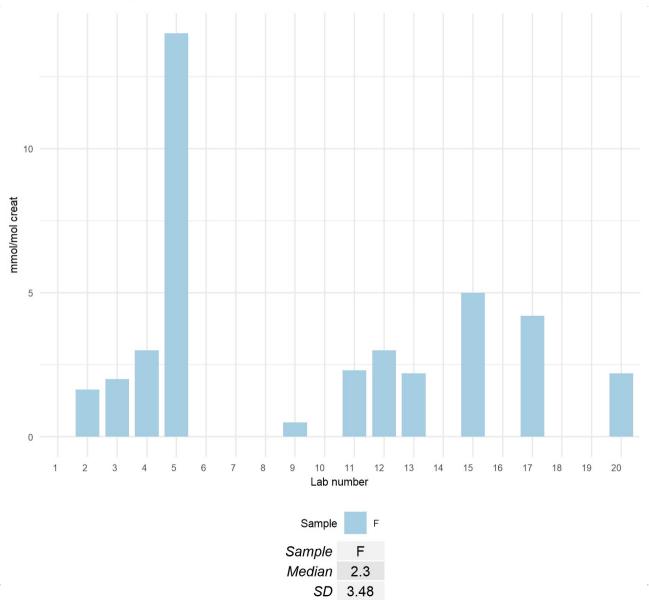
	Analytical performance	72 %
•	Interpretative performance	98 %
>	Overall performance	85 %

Patient F: Glutaric aciduria type I

- ▶ 57-year-old woman, born from consanguineous parents
- Has been complaining for many years of fatigue, dyspnea, balance problems
- And recently of reduced walking perimeter, and cognitive problems
- Abnormal brain MRI and electroneuromyogram (no details provided)
- DBS acylcarnitine profile, performed as part of a broader etiological assessment, revealed an increase in glutarylcarnitine
- Urinary organic acids: isolated increase in 3-hydroxyglutaric acid
- Diagnosis of glutaric aciduria type I, low excretor, confirmed by mutation analysis GCDH gene (homozygosity for a deleterious variant)


Patient F: glutaric aciduria type I

•	 Most likely diagnosis Glutaric aciduria type I (GAI low excretor, glutaryl-CoA dehydrogenase def.) 	18
	Pompe disease	2
•	Alternative diagnosis Glutaric aciduria type I, late onset	ı
	Glutaric aciduria type IICPT I, SCHAD def.	2 I


Patient F: Glutaric aciduria type I

•		
	Increase in	
	> 3-hydroxyglutaric acid	20
	(median = $24.2 \text{ mmol/mol creatinine}$; range : $7.06 - 41 \text{ ; n=14}$)	
	▶ Glutaric acid	l l
	(no quantification)	
	No increase in	
	→ Glutaric acid	13
	(median = $2.3 \text{ mmol/mol creatinine}$; range : $0.5 - 14.0$; n=11)	
•	Acylcarnitines (11/20)	
	Increase in	
	→ Glutarylcarnitine	- 11
	(median = 9 mmol/mol creatinine: range : 1.7 – 32 : n=9)	

Patient F: 3-hydroxyglutaric acid

Patient F: glutaric acid

3-hydroxyglutarate excretion

▶ Glutaric aciduria type I, low excretors of glutaric acid (Busquets, Merinero et al, Pediatric Research 2000;48: 315–322): results from 17 patients

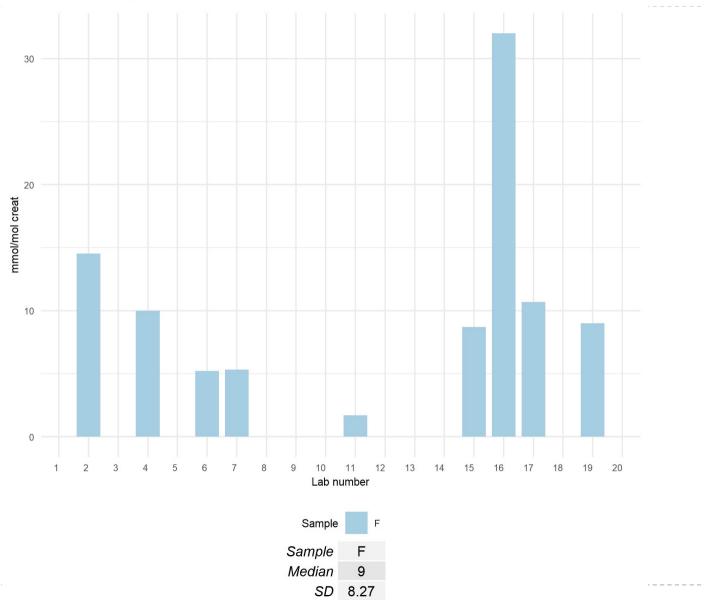
mmol/mol creat	Range	Median	Mean	Controls
3-hydroxyglutaric acid	18 - 571	101	160	2 – 14
Glutaric acid	2 - 84	10	21	2 – 10

Ketosis: 3-hydroxyglutarate < 10 mmol/mol creat</p>

3-hydroxyglutarate excretion

SCHAD deficiency (*Vilarinho et al Mol Genet Metab 2012;106:277, **Martins et al, JIMD 2011;34:835, ***CBPE)

mmol/mol creat	*	2**	3**	4**	5**	6***
C4OH µmol/L	1.22			0.5-0.6	0.7	0.7-1.6
30HGlutaric	113	12 - 45	22 - 45	33 - 114	55	13 - 31


▶ **CPT I deficiency** (Korman et al, Mol Genet Metab 2005;86:337)

mmol/mol creat	Patient I	Patient 2	Patient 3	Controls
Age	14 months	3 years	23 months	
3-hydroxyglutarate	9.8	24.7	14.7	0.88 - 4.5
Glutarate	3.4	1.2	2.3	0.5 – 10.8
Dicarboxylic acids	C6 – C12	C6 – C12	C6 – C12	

Patient F: Glutaric aciduria type I

•	Organic acids (20/20)	
	Increase in	
	> 3-hydroxyglutaric acid	18
	(median = $24.2 \text{ mmol/mol creatinine}$; range : $7.06 - 41$; n=14)	
	→ Glutaric acid	1
	(no quantification)	
	No increase in	
	→ Glutaric acid	13
	(median = $2.3 \text{ mmol/mol creatinine}$; range : $0.5 - 14.0$; n=11)	
•	Acylcarnitines (11/20)	
	Increase in	
	▶ Glutarylcarnitine	- 11
	(median = 9 mmol/mol creatinine; range : 1.7 – 32 ; n=9)	

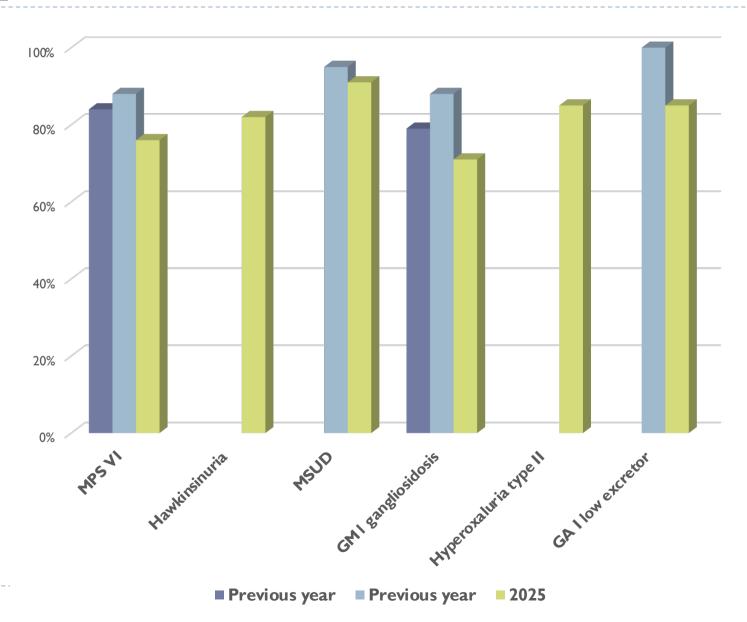
Patient F: glutarylcarnitine

Urinary glutarylcarnitine

- It may seem unusual to perform urinary acylcarnitines
- In 2005, Tortorelli et al. investigated
 - ▶ 14 GA-I patients: 5 of them had a normal glutaric acid excretion and 9 a normal plasma acylcarnitine profile
 - ▶ 54 subjects with glutaric aciduria secondary to other causes (16-7509 mmol/mol creatinine; reference range: <15) but a normal excretion of 3-hydroxyglutaric acid
- They demonstrated that the excretion of glutarylcarnitine was
 - ▶ Significantly elevated in the 14 GA-1 patients: 14-522 mmol/mol creatinine; reference range: <5.2
 - Normal in the 54 "control" subjects with glutaric aciduria llary to other causes
- They concluded: "Urinary excretion of glutarylcarnitine is a specific biochemical marker of glutaric aciduria type I which could be particularly useful in the work up of patients with suggestive clinical manifestations but without glutaric aciduria and with normal plasma acylcarnitine profiles"

Tortorelli S, Hahn SH, Cowan TM, Brewster TG, Rinaldo P, Matern D. The urinary excretion of glutarylcarnitine is an informative tool in the biochemical diagnosis of glutaric acidemia type I. Mol Genet Metab. 2005;84(2):137-43

Patient F: interim scoring


- Analytical performance
 - Increase in 3-hydroxyglutaric acid (score I)
 - Increase in glutarylcarnitine (score I)
- Interpretation of results
 - ▶ Glutaric aciduria type I as main diagnosis (score 2)

Patient F: interim scoring

A similar urine sample (low excretor) has been distributed in 2018: the overall performance was better the previous year

	2018	2025
Analytical performance	100 %	78 %
Interpretative performance	100 %	92 %
Overall performance	100 %	85 %

Improvement DPT France

DPT France 2026

Same "rules" than in 2025

- ▶ 2 surveys of 3 urines, including "normal" patients
- Samples distributed by CSCQ or MCA February 4th
- Start of first survey March 17th and second survey June 1st (to be confirmed)
- Results sent within 3 weeks
- Reporting on CSCQ website
- Scoring by 2 scheme organizers

Satisfactory performance

- Score >70% (score ≥17 / 24)
- No critical error

DPT France meeting in 2026

- During SSIEM meeting in Helsinki
- Tuesday August 25th
- **▶** 9:00 − 10:30
- Further details will follow

Conclusion

- Questions
- Remarks
- Other ...

We still need urine samples

Minimum: 200 ml

If possible: 1000 ml (common sample)

You will get a 20% discount the following year!

Thank you in advance!

