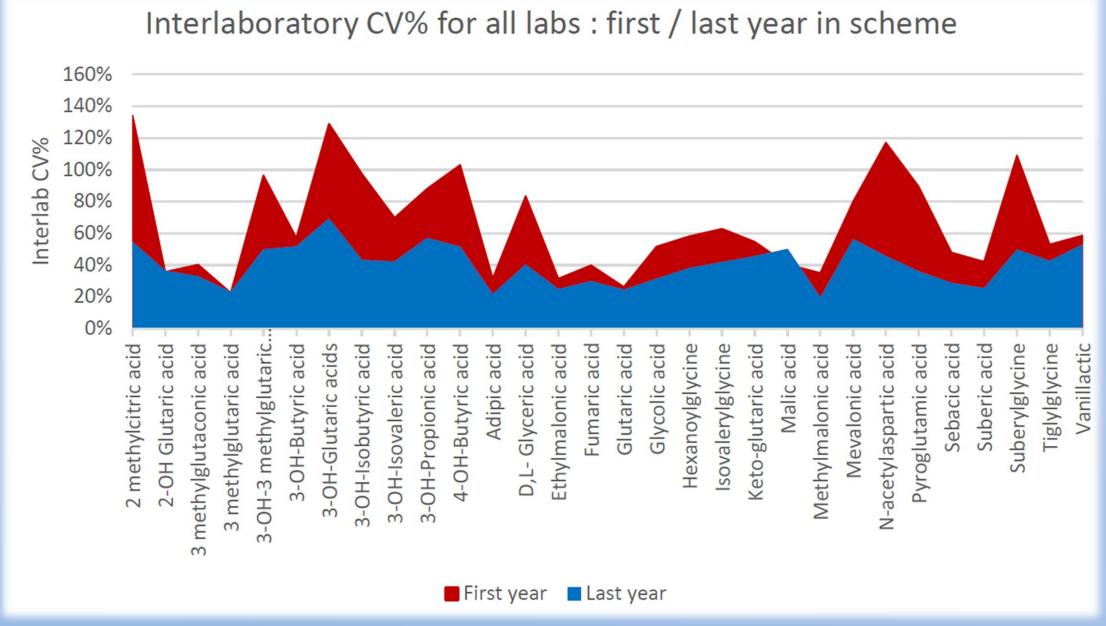


Urine Organic Acid Analysis by GC-MS:

The Need for Methodological Rigor Amidst Diagnostic & Technological Challenges

C. Kanakaki*, E. Stavra, M. Sakellari, M. Moraitou

Institute of Child Health, Department of Enzymology & Cellular Function, Thivon & Papadiamantopoulou Str., 11527, Athens, Greece e-mail: ckanakaki@ich.gr


Introduction:

Gas chromatography—mass spectrometry (GC-MS) remains the technique of choice for urine organic acid (UOA) analysis, vital in diagnosing organic acid urine organic acid (UOA) analysis, vital in diagnosing organic acid (UOA) analysis organic acid (UOA) analysis organic acid (UOA) ana but also further nutritional and toxicological conditions. Despite its widespread use, recent external quality assessments, including ERNDIM schemes, highlight persistent inter-laboratory variability in the quantification of key metabolites, potentially impacting diagnostic reliability. At the same time, advances in mass spectrometry have promoted a growing interest in both LC-MS/MS and GC-MS/MS and biochemical laboratories. The sources of result variability as well as the advantages and limitations of the most investigated analytical techniques potentially applicable in UOA analysis are discussed below.

Sources of GC-MS Result Variability Data Evaluation Sample Preparation -Analysis Sampling Storage extraction sample itself automation automation external chemicals concentration experience system checks derivatization handling procedure metabolite interactions calibration approaches contaminations identification errors metabolite degradation validation (sensitivity, degradation / losses

Fig. 1. General workflow of derivatization-based GC-MS metabolomic platforms, accompanied by the major factors in each step that might lead to variations and the corresponding influences and implications [1].

incomplete derivatization

exogenous substances /

contaminations

Fig. 2. Difference in Interlaboratory CV% of all labs between the first year and the last year of compound introduction in scheme (15-years interval)[2].

With the sample preparation step introducing most variations, without a harmonized workflow the factors that must be critically evaluated before implementation include, among others, the following [4]:

selection of internal standard,

stability, etc.)

- selection of extraction solvent
- extract evaporation temperature
- drying step duration
- application of oximation
- selection of derivatization reagent, time & temperature
- use of catalyst.

On the other hand, method validation is the key factor ensuring both reproducibility and accuracy.

Conventional & Advanced Analytical Techniques in UOA Analysis

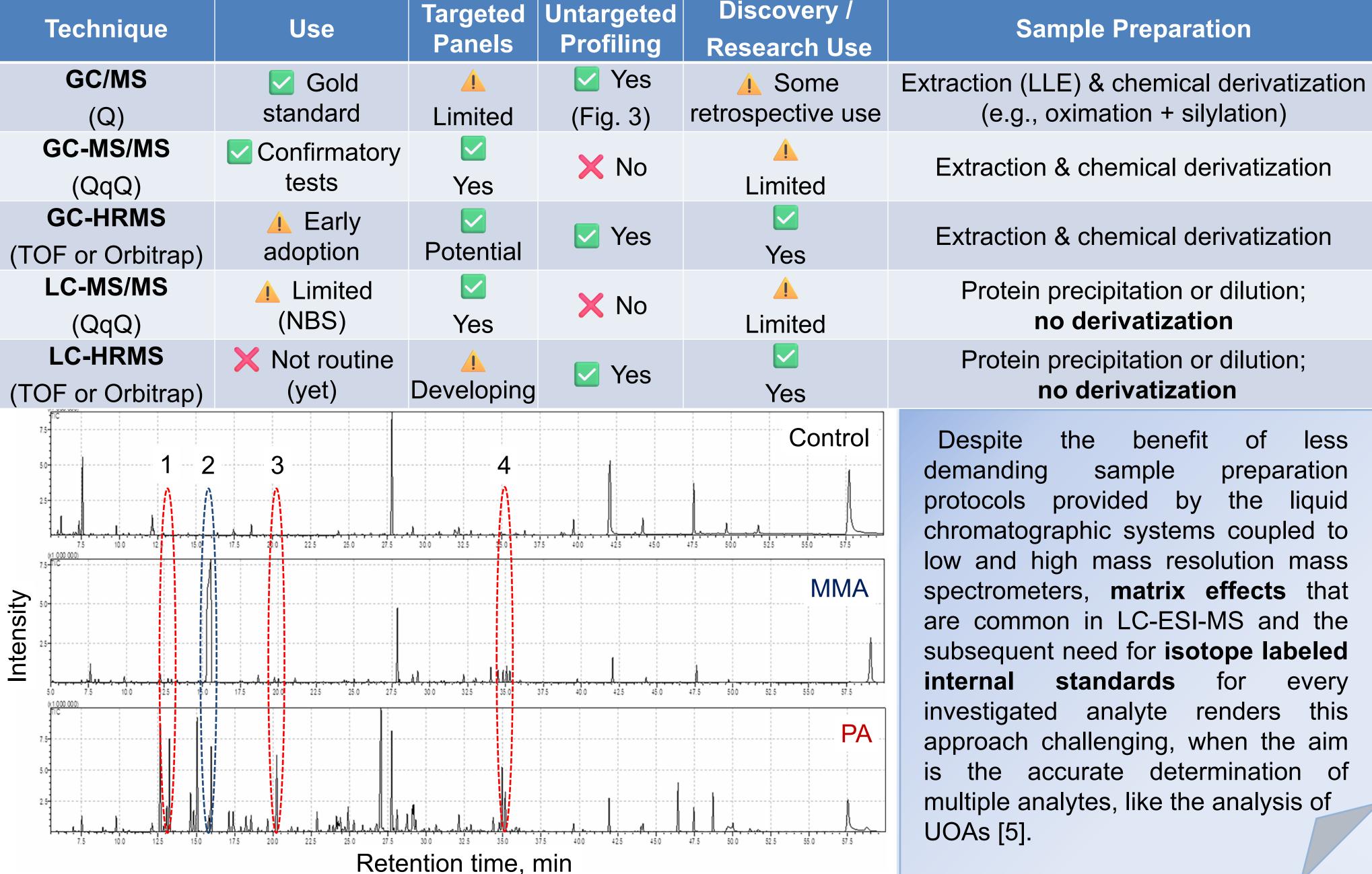


Fig. 3. The typical total ion chromatograms (TICs) of urine metabolic profiling for controls, MMA and PA (from top to bottom), where the most characteristic biomarkers are 3-OH-propionic (1), Methylmalonic (2), Propionylglycine (3) and Methylcitric (4)[3].

no derivatization benefit Despite of demanding sample preparation protocols provided by the liquid chromatographic systems coupled to low and high mass resolution mass spectrometers, matrix effects that are common in LC-ESI-MS and the subsequent need for isotope labeled internal standards for investigated analyte renders this approach challenging, when the aim accurate determination of multiple analytes, like the analysis of UOAs [5].

Sample Preparation

(e.g., oximation + silylation)

Extraction & chemical derivatization

Extraction & chemical derivatization

Protein precipitation or dilution;

no derivatization

Protein precipitation or dilution;

Conclusions:

- GC-MS provides broad-spectrum, full-scan metabolite profiling, enabling both qualitative and quantitative evaluation of UOAs, while the results are partially also enabling the retrospective analysis of the obtained data.
- The development of sensitive GC-HRMS methods is of paramount importance in the establishment of new biomarkers, but its cost and the need for specialization demands limit its wider application in clinical and analytical laboratories.

quantification errors

- Result variances can potentially carry significant clinical implications, since incorrect peak identification of key metabolites due to inconsistent recovery can compromise diagnostic accuracy.
 - Harmonization of the entire analytical workflow applied in UOAs analysis is the key factor in achieving reliable results and eliminating the possibility of misinterpretations.

Reference:

- [1] F. Xu, L. Zou, C.N. Ong, Experiment-originated variations and multi-peak and origination phenomena in derivatisation-based GC-MS metabolomics, Trends in Analytical Chemistry, Vol. 29, No. 3, 2010.
- [2] C. Roux-Petronelli, C.W. Weykamp, ERNDIM Quantitative schemes organic acids (urine) Annual Report 2023.
- [3] Q. Yang et al., GC–MS urinary metabolomics analysis of inherited metabolic diseases and stable metabolic diseases and stab
- [4] R.S. Carling et al., Urine organic acid metabolomic profiling by gas chromatography mass spectrometry: Assessment of solvent extract evaporation parameters on the recovery of key diagnostic metabolites, Clinica Chimica Acta 565 (120015), 2025.
- [5] T. Mouskeftara, C. Virgiliou, G. Theodoridis et al., Analysis of urinary organic acids by gas chromatography A 1658 (462590), 2021.

Acknowledgment:

We would like to acknowledge the training opportunity in Urine Organic Acids Analysis provided by the Clínic Barcelona and performed under the supervision of Dr. Judit García Villoria, as well as the financial support provided by the HSSIEM (Hellenic Society for the Study of Inborn Errors of Metabolism).

