

QUALITY ASSURANCE IN LABORATORY TESTING FOR IEM

Diagnostic Proficiency Scheme UK – Common Sample ERNDIM Workshop, September 2022

Claire Hart (Deputy Scientific Advisor), Sheffield, UK

QUALITY ASSURANCE IN LABORATORY TESTING FOR IEM

Sample A – Common Sample

- Provided by UK DPT scheme organisers
 - Returns were received from all 97 participants

www.erndim.org

Common Sample (A)

- 14 year old male
- Pre-natal growth concerns. Monitored throughout life for poor growth (height and weight < 2nd centile)
- Presented at 4 years of age due to lips going blue during exercise – found to have cardiomyopathy
- Diagnosed at 14 years when genome sequencing became available, confirmed by bloodspot cardiolipin
 - This sample came from a patient with BARTH SYNDROME.

Sample A – marking scheme 📕

QUALITY ASSURANCE IN LABORATORY TESTING FOR IEM

(Marking scheme used by all the DPT scheme organisers)

- Analytical
 - Detecting increased concentration of 3 methyl glutaconate: 2 marks
- Interpretation
 - Barth syndrome (as primary or alternate diagnosis): 2 marks
 - Any secondary 3 methyl glutaconic aciduria (as primary or alternate diagnosis): 2 marks
 - Primary 3 methylglutaconic acidurias (either HMG CoA lyase or 3 methylglutaconyl CoA hydratase deficiency) with no mention of Barth syndrome: 1 mark only
 - 3 methylglutaconic aciduria as diagnosis only (i.e. no mention of primary or secondary): 1 mark only

Analytical Performance

QUALITY ASSURANCE IN LABORATORY TESTING FOR IEM

 Returns were received from all participants in all schemes

Marks	UK (20)	France (20)	Czech R (19)	Switzerland (20)	Netherlands (18)	Total (97)
2	20	18	18	20	18	94 (97%)
1	0	0	0	0	0	0
0	0	2	1	0	0	3 (3%)

Interpretative Performance

QUALITY ASSURANCE IN LABORATORY TESTING FOR IEM

Marks	UK (20)	France (20)	Czech R (19)	Switzerland (20)	Netherlands (18)	Total (97)
2	19	15	17	19	18	88 (91%)
1	1	3	1	1	0	6 (6%)
0	0	2	1	0	0	3 (3%)

 Those that scored zero for interpretation were those that did not recognise the raised 3methylglutaconate

Types of 3-methylglutaconic aciduria

QUALITY ASSURANCE IN LABORATORY TESTING FOR IEM

- Primary
 - 3-methylglutaconyl –CoA hydratase deficiency (AUH gene, Type 1 MGA) – increased 3hydroxyisovaleric acid in addition to 3MGA
 - HMG-CoA lyase deficiency (HMGCL gene) increased 3-hydroxy-3-methylglutarate and usually 3-hydroxy IVA

These disorders should be distinguishable from each other and from secondary causes

Types of 3-methylglutaconic aciduria

- Secondary Causes (3-methylglutaconic and 3-methylglutarate only)
 - Barth Syndrome (TAZ gene, MGA Type 2)
 - Costeff syndrome (OPA3 gene, MGA Type 3)
 - MEGDEL Syndrome (SERAC1 gene)
 - THEM70 deficiency (THEM70 gene)
 - DCMA syndrome (DNAJC19 gene, MGA Type 5)
 - Various others, e.g. ECHS1 deficiency, mtDNA depletion (POLG, SUCLA2), MELAS, other mitochondrial disorders, CPS1 deficiency, Smith-Lemli-Opitz, GSD Type1A

Recommendations

	UK	France	Czech R	Switzerland	Netherlands	Total (of 97)
Cardiolipin	17	6	2	7	11	43
General genetics	10	14	11	9	9	53
TAZ gene	15	10	13	11	14	63
FBC	8	8	4	7	8	35
Refer to metabolic	16	2	0	4	5	27
Refer to cardiology	5	3	1	5	6	20
Repeat Organic acids	6	2	0	0	3	11
Genetic counselling / sibling testing etc	6	0	0	7	1	14

Overall performance

Sample	Analytical performance	Interpretive performance	
Barth Syndrome	97%	91%	

Acknowledgements

- Joanne Croft, UK DPT Scheme Scientific Advisor
- Louisa Smith, Chief BMS, Sheffield Children's Hospital Clinical Chemistry