Treatment Monitoring and Multicentre Studies ERN in Inherited Metabolic Disorders (IEM)

Fowler B¹, Gardner S² and Weykamp CW³ on behalf of ERNDIM

1University Children's Hospital, CH-4005, Basel, Switzerland, 2Manchester Centre for Genomic Medicine, St Mary's Hospital, M13 9WL, Manchester, UK, ³Queen Beatrix Hospital, NL-7100 GG Winterswijk, Netherlands

Introduction

Can you trust your amino acid results for treatment modifying decisions?

worldwide (2013)

The ERNDIM amino acid EQA scheme assesses accuracy, recovery, precision, linearity and inter laboratory variance (CV) of quantitative measurements for 24 common and selected special amino acids relevant to IEMs and provides a means to answer these questions (answer below) Participants (%)

Scheme Details

- · 8 samples of lyophilised human serum spiked with physiologically relevant levels of 28 amino acids
- · Results submitted via ERNDIM interactive website
- · 8 monthly reports plus annual report · 243 participants from 48 Countries
- · Certificate issued once a year by ERNDIM Board
- Scheme operated since 1993

· Cost (2013): 227 EURO Participants' Annual Report

- · Performance based on 4 parameters:
- Accuracy Precision Linearity . Recovery
- The parameters are scored for each analyte; those falling outside the 95th percentile for all laboratories are indicated with red shading
- · Two or more parameters with red shading or insufficient submissions are equated to unsatisfactory performance for that particular analyte
- Green shading indicates satisfactory performance for that analyte

Variation within and between labs

- 1. Usual Amino Acids: (2002 vs 2012) [Table 1]
- 2012: most amino acids have good performance with precision <5% & interlab variation <10%; worst performance is for asparagine and aspartic acid
- · 2002 vs 2012: both precision and interlab variation show clear improvement for nearly all amino acids

Table 1: Usual Amino Acids (2002 vs 2012)

	2002			2012			
	Precision (CV% duplicates)	ln va	terlab riation	Precision In (CV% duplicates) va		terlab	
Amino Acids	All labs	n	CV%	All labs	n	CV%	
2-Aminobutyric acid	11.40%	138	20.30%	6.80%	204	11.50%	
Alanine	4.00%	158	8.45%	4.20%	252	8.13%	
Arginine	6.00%	153	10.70%	4.40%	247	9.50%	
Asparagine	19.70%	137	36.60%	6.70%	236	24.20%	
Aspartic Acid	10.00%	151	18.80%	6.80%	245	19.10%	
Citrulline	6.90%	150	12.10%	4.70%	245	9.44%	
Cystine	9.50%	145	13.70%	7.40%	229	12.60%	
Glutarnic acid	8.50%	154	15.60%	5.80%	251	10.50%	
Glutamine	8.10%	153	12.00%	5.60%	241	9.40%	
Glycine	4.30%	158	8.10%	4.10%	252	9.81%	
Histidine	7.30%	155	11.70%	5.60%	247	11.10%	
Hydroxyproline	17.10%	133	26.80%	7.60%	213	12.50%	
Isoleucine	5.20%	156	9.10%	4.00%	253	9.17%	
Leucine	4.90%	157	8.32%	3.90%	253	8.71%	
Lysine	5.30%	157	8.71%	4.50%	252	9.81%	
Methionine	6.70%	156	10.60%	4.90%	253	9.86%	
Ornithine	5.40%	155	9.83%	4.70%	252	9.78%	
Phenylalanine	4.50%	158	8.04%	4.50%	254	8.91%	
Proline	8.30%	140	13.40%	5.60%	234	10.50%	
Serine	4.60%	156	8.64%	4.40%	251	9.64%	
Taurine	5.70%	153	11.20%	4.40%	230	8.32%	
Threonine	3.90%	155	7.61%	4.10%	250	7.30%	
Tyrosine	5.20%	158	9.09%	3.90%	254	10.40%	
Valine	4.50%	157	8.48%	3.70%	253	7.30%	

- 2. Special Amino Acids [Table 2]
- · Performance less satisfactory than for usual amino acids
- · Submission of results for some amino acids low: 19% of labs for aspartyl glucosamine and 24% for pipecolic acid compared to 89% for $\alpha\text{-amino}$ adipic acid
- · Repeat circulation: improvement for argininosuccinic acid, hydroxylysine and sarcosine

	Scheme year	Precision (CV% duplicates)	Interlab variation	
Amino Acids		All labs	n	CV%
α-amino adipic acid	2005	6.7%	162/182	18.1%
ß-alanine	2005	12.2%	157/182	20.9%
δ-aminolaevulinic acid	2011	7.6%	76/245	19.3%
Allo-isoleucine	2011	5.9%	181/245	12.6%
Argininosuccinic acid	2002	15.2%	121/158	32.3%
	2010	11.4%	142/233	26.9%
Aspartyl glucosamine	2012	7.7%	49/254	17.1%
Contathianian	2002	9.3%	138/158	18.9%
Cystatriionine	2012	8.7%	181/254	21.9%
Homocystine	2007	11.7%	163/205	25.0%
I balance dominan	2002	13.9%	124/158	24.2%
nyuruxyrysine	2008	4.7%	155/205	9.3%
Phosphoethanolamine	2010	9.6%	166/233	24.4%
Pipecolic acid	2012	13.1%	62/254	27.8%
Saccharopine	2010	5.4%	112/233	13.5%
Paraonina	2002	9.3%	127/158	14.9%
Galcosine	2008	11.3%	162/205	17.9%
Sulpho-cysteine	2008	13.9%	101/205	33.4%
Tryptophan	2012	6.4%	191/254	11.9%

of 397umol/L

1. Alanine [Figure 2]

8 laboratories reported values of >3 S.D. above or below the median (<319 and >475)

· Consensus alanine value

2012

74%

1%

16%

1%

2%

6%

2. Pipecolic acid [Figure 3]

- · Only a few labs reported this amino acid
- Even with the quite high level of 39umol/L several labs reported very low values
- · Current methods used in Amino Acid analysis are less suitable for detection of pipecolic acid than other methods e.g. GC-MS with stable isotope dilution

Figure 3: Detailed Analyte Report - pipecolic acid

Conclusions

- · Performance assessment in an EQA scheme provides a valuable tool to test a) application of agreed treatment decisions; and b) the validity of metabolite values in concentrations multicentre studies of treatment outcome.
- · Inclusion of special amino acids can reveal methodological inadequacies in separation, standardisation or insufficient sensitivity e.g. arginino succinic acid, pipecolic acid.

Laboratory experience and educational aspects of ERNDIM appear to have led to improvement in performance of amino acid analysis

Ask your lab how they perform in ERNDIM EQA schemes!

Can they be used in multi-centre studies?

QUALITY ASSURANCE IN LABORATORY TESTING FOR IEM