New Developments in Disorders of Intracellular UKBB Vitamin B₁₂ (Cobalamin) Metabolism

B. Fowler University Children's Hospital Basel, Switzerland

Structure of Vitamin B₁₂ (Cobalamin, Cbl)

Essential cofactor for 2 Enzymes

Methionine Synthase Methyl-Cbl

Methylmalonyl CoA-Mutase Adenosyl-Cbl

Foods rich in Vitamin B₁₂ (Cobalamin)

Vitamin B₁₂ and Homocysteine Metabolism

Intracellular Cobalamin Metabolism: 2002

Intracellular Cobalamin Metabolism: 2002 complementation groups

CbIC defect: early clinical presentation

- 3.5 w. Feeding problems temperature dysregulation Pale, irritable, unconscious, dystrophic poor growth neurological abnormalities, tachycardia anaemia
- PlasmaHcy $\uparrow \uparrow \uparrow$ Methionine \checkmark UrineMethylmalonic acid $\uparrow \uparrow \uparrow$ TreatedOH-Cbl i.m 1mg/d.betaine, carnitine

4 months re-admitted to hospital died one day later - multi-organ failure/hyperthermia

CbIC defect, late Clinical presentation

Clinical

12y- 21y.

Unsteady gait, urinary incontinence Spinal cord involvement, neuropathy inability to walk respiratory insufficiency (respirator) *Thought to have multiple sclerosis:* Steroid treatment

Laboratory Urine MMA 个个个 Plasma total homocysteine 个个 Treated i.m. OH-Cbl 500µg / d. - 10mg /week

Gold et al. 1995

The CbIC defect of cellular cobalamin metabolism

Identification of the gene responsible for methylmalonic aciduria and homocystinuria, cblC type

Jordan P Lerner-Ellis^{1,2}, Jamie C Tirone^{1,2}, Peter D Pawelek³, Carole Doré⁴, Janet L Atkinson⁵, David Watkins^{1,2}, Chantal F Morel^{1,2}, T Mary Fujiwara^{1,2}, Emily Moras^{1,2}, Angela R Hosack², Gail V Dunbar², Hana Antonicka^{1,6}, Vince Forgetta⁴, C Melissa Dobson⁷, Daniel Leclerc^{1,2}, Roy A Gravel⁷, Eric A Shoubridge^{1,6}, James W Coulton³, Pierre Lepage⁴, Johanna M Rommens⁵, Kenneth Morgan^{1,2} & David S Rosenblatt^{1,2}

NATURE GENETICS 38 I NUMBER1 I JANUARY 2006 93-100

- Discovered by homozygosity mapping
- Located on chromosome 1p
- Codes for ca. 30 kDa protein

The cbIC gene

- In 204 individuals, 42 different mutations
- One mutation, 271dupA, accounted for 40% of all disease alleles.
- In further 118 individuals, 11 additional mutations 42% 271dupA (Lerner-Ellis...Fowler:Hum Mutation 2009)

Function of the cblC protein

- Similar motifs to those seen in bacterial genes with cobalamin-related functions e.g. TonB
- TonB is involved in transducing energy generated from the proton motive force across the outer bacterial me
- Recombinal **CNCbl** decy
- Exact functi Evidence su chaperone proteins.

ions *in vitro* as a alamin trafficking er cobalamin related

MMACHC homology model (red) and the three-dimensional NMR structure of the monomeric C-terminal domain of TonB (blue).

The CbID Defect

The cbID complementation group

(Willard et al. 1978, Am. J. Hum. Genet.)

Originally Assigned to two siblings with homocystinuria / MMAuria (Goodman et al. 1970, Biochem. Med.)

Fibroblasts studies

- \downarrow uptake of Cbl
- \checkmark synthesis of AdoCbl and MeCbl
- ↓ MMCoA-mutase and Methionine synthase activity

BUT less severe than those in cbIC defect

The CbID defect of cellular CbI metabolism one gene – three phenotypes

Original cbID

2 siblings with combined defect methylmalonicaciduria (MMA) and homocystinuria (Hcy)

- Our study (2004, Suormala, Coelho, Fowler et al. J B Chem: 279: 42742)
 - 2 patients with isolated Hcy normal MMA

1 patient with isolated MMA –normal Hcy
Complementation studies proved that these patients
belong to the cbID complementation group = gene

- Now 13 patients known
 - 4 combined defect (2 described 1980, 2 new ones)
 - 4 isolated homocystinuria,
 - 5 isolated Methylmalonic acidaemia

Intracellular Cobalamin Metabolism

Classification of cbID patients

	Urine	Plasma	Clinical findings
CbID-MMA/HC 4 patients	MMA ተተተ	Hcy ↑↑↑ Methionine ↓	Development delay Seizures Hypotonia Lethargy Feeding difficulties Megaloblastic anemia
CbID-HC 4 patients	MMA normal	Hcy ↑↑↑ Methionine ↓	Development delay Ataxia Absent ankle reflex Megaloblastic anemia
CbID-MMA 5 patients	MMA ተተተ	Hcy normal Methionine normal	Respiratory distress Cranial haemorrhage Seizures EEG abnormal

Search for the cbID gene

Identification of the chromosome Microcell Mediated Chromosome Transfer (MMCT)

Chromosomal region

Polymorphic markers analysis

Candidate gene

Homology search with bacterial proteins

Mapping analysis of chromosome 2

- 10.2 Mb chromosomal interval (2006 29 Mb)
- containing 28 genes (2006 168, 2 candidates studied)
- 8 uncharacterized genes

/	сМ	Markers	Size	HET (%)
	154,4	150	218-242	83
	154,4	2286	218-264	70
	154,4	2334	259-273	77
	154,6	349	129-135	47
	154,8	129	162-180	77
	155,9	132	189-213	76
	156,4	381	298-312	60
	156,4	2270	209-221	56
	156,4	151	211-229	80
	156,9	2335	153-173	76
	157	2301	108-135	73
	158,6	2277	245-259	58
	158,6	2324	130-156	71

Chromosomal location of the candidate gene

- Significant homology with bacterial genes related to ABC transporters
- Encodes a polypeptide of 296 aminoacids (32.8 kDa)
- Mutations were found in all cbID patients
- \rightarrow <u>Methyl</u>Malonic <u>A</u>ciduria and <u>Homo</u>Cystinuria cblD type (*MMADHC*)
- Maps to chromosome 2q23.2

Transfection of *combined defect* fibroblasts with wild type and mutant *MMADHC*

MMADHC mutations

MMADHC mutations in cbID-MMA

Possible function of the cbID Protein

- Protein sequence highly conserved in mammalian species
- *MMADHC* not member of previously identified gene family
- Shares similarity with putative ATPase component of bacterial ABC transporter
- Lacks critical domains of most ABC transporters
- Possible mitochondrial leader sequence
- Vitamin B₁₂ binding motif DxHxxG

Identification of AdoCbl and MeCbl functional domains

cbIF defect

Clinical Presentation (Fernandes book, 2006)

- Seven of eight presented in the first year of life. (now 14 patients known)
- Megaloblastic anemia, neutropenia and thrombocytopenia.
- Failure to thrive, recurrent infections, developmental delay, lethargy, hypotonia, aspiration pneumonia, hepatomegaly and encephalopathy, pancytopenia, and heart anomalies.
- Original infant girl had glossitis and stomatitis in first week of life.
 - severe feeding difficulties requiring tube feeding.
 - Tooth abnormalities and dextrocardia were present.
- One infant died suddenly at home in the first year of life.
- One boy developed juvenile rheumatoid arthritis at the age of 4 years and a pigmented skin abnormality at 10 years.

cbIF defect

Metabolic Derangement

- Failure of Cbl transport across the lysosomal membrane following degradation of TC in the lysosome.
- No conversion of Cbl to either AdoCbl or MeCbl.
- Abnormal Schilling test suggests IF-Cbl has to pass through a lysosomal stage in the enterocyte before Cbl is released into the portal circulation.

Genetics

- Autosomal recessive.
- The gene responsible for cbIF has not been identified

Treatment

Parenteral OHCbl, 1mg/day, (first daily and then biweekly, or even less frequently) seems to be effective in correcting the metabolic and clinical findings.

cbIF defect: Diagnostic Tests

Plasma Hcy ↑↑↑ cobalamin ↓ / Normal Urine

Schilling test abnormal

Methionine Ψ

Methylmalonic acid 个个个

Precise diagnosis requires tests in cultured fibroblasts.

- Incorporation of [14C] propionate into macromolecules screen for integrity of methylmalonyl-CoA mutase activity
- Conversion of [14C] labeled formate to methionine reliably measures methionine synthase function
- Total incorporation of [57Co] CNCbl and conversion to both MeCbl and AdoCbl, can differentiate Cbl disorders.

In *cbIF* patients, total incorporation of labeled CNCbI elevated, but CNCbI not converted to AdoCbI or MeCbI.

2009: 41;234

Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B_{12} metabolism

Frank Rutsch¹, Susann Gailus¹, Isabelle R Miousse², Terttu Suormala³, Corinne Sagné⁴, Mohammad Reza Toliat⁵, Gudrun Nürnberg⁵, Tanja Wittkampf¹, Insa Buers⁶, Azita Sharifi⁴, Martin Stucki^{7,8}, Christian Becker⁵, Matthias Baumgartner⁷, Horst Robenek⁶, Thorsten Marquardt¹, Wolfgang Höhne⁹, Bruno Gasnier⁴, David S Rosenblatt², Brian Fowler³ & Peter Nürnberg^{5,10} Multi-point linkage analysis of the genome-wide scan using the Affymetrix GeneChip® Human Mapping 250K Sty Array.

Fine polymorphic mapping and haplotype analysis reveals LMBRD1 as candidate gene

Localisation of transiently expressed LMBD1-EGFP with the lysosomal marker LAMP1

- Mutations in the LMBRD1 gene (encoding LMBD1, a lysosomal membrane protein) found in cbIF patients
- Transfection of cbIF fibroblasts with wild-type LMBD1 rescued cobalamin coenzyme synthesis
- LMBRD1 identifed as cbIF gene and suggests that LMBD1 is a lysosomal membrane exporter for cobalamin

The 1056delG allele (No. 5) leading to a frameshift and premature termination codon in exon 11 was present on 18 of the 24 disease chromosomes (common 1.34 Mb haplotype).

Transfection of cbIF fibroblasts wild-type LMBD1 rescued cobalamin coenzyme synthesis and function.

Coelho D, Suormal T, Stucki M, Lerner-Ellis JP, Rosenblatt DS, Newbold R, Baumgartner M, Fowler B.

Acknowledgements

- Terttu Suormala, David Coelho (Basel),
- Matthias Baumgartner, Martin Stucki (Zürich)
- Jordan Lerner-Ellis, David Rosenblatt (Montreal)
- Petra Zavadakova, Viktor Kožich (Prague)
- Hans Georg Koch, Martin Berghäuser (Münster)
- James E. Wraith (Manchester), Alberto Burlina (Padua)
- Adrian Sewell, Jürgen Herwig (Frankfurt)
- Many colleagues who sent us fibroblasts
- Swiss National Science Foundation grant No 3200-066878