Organisation of Biochemical Genetic Testing in Estonia

Katrin Õunap

Department of Pediatrics, University of Tartu Department of Genetics, Tartu University Hospital

ESTONIA

- 1,35 million inhabitants
- Approximately 300,000 children
- ~15,000 births per year

Genetic service in Estonia

- In 1990 medical genetic service was opened at Tartu Children's Hospital
 - For counselling children with rare inherited diseases (incl. metabolic diseases)
 - For prenatal testing
- In 1996 molecular diagnostic laboratory
 - For newborn screening (PKU, hypothyreosis)
 - For DNA testing of inherited diseases (over 30 different tests)
- Tallinn Children's Hospital
 - Genetic counselling
 - Official genetic centre in 2004

At the present moment

- Two genetic centres for counselling and investigating patients with metabolic diseases:
 - In Tartu University Hospital, Department of Genetics
 - In Tallinn Children's Hospital

Following analyses are available:

- ammonia, lactate, uric acid
- simple urinary screening tests:
 - Tests for mucopolysaccharidoses (MPS)
 - Teducing substances (Benedickt reaction)
 - Sulfites
 - Ketones (DNPH test)
- phenylalanine from dried blood (newborn screening since 1993)
- homocysteine
- total serum sialotransferrine

Following analyses are available:

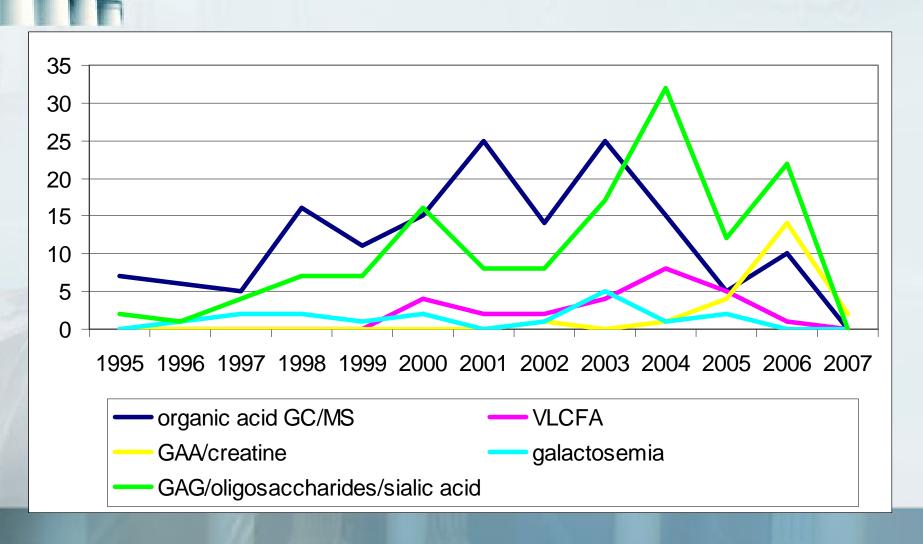
- In cooperation with Central Laboratory of Chemistry of Health Protection Inspectorate in Tallinn:
 - Amino acid analysis (HPLC) since 1992
 - Sugars (HPLC) since 1992
 - Organic acid GC/MS since 2003
 - Very long chain fatty acid in serum since 2005
 - Creatine and guanidinoacetate analysis since 2007
 - MPS analysis, SAICAR test since 2007

No of quantitative biochemical analyses in 2007

	Total	Tartu	Tallinn
Amino acids	453	279	174
Sugars HPLC	64	26	38
Quantitative MPS	14	9	4
Organic acid GC/MS	439	246	193
GUAA/creatine	108	98	10
VLCFA	23	11	12

Following analyses are available:

- In Department of Genetics of Tartu University Hospital DNA tests for:
 - Phenylketonuria (PKU, 6 common mutations)
 - Classical galactosemia (Q188R, sequencing)
 - The main mutation of MCAD deficiency (985A>G)
 - The main mutation of LCHAD deficiency (G1528C)
 - CLN type III

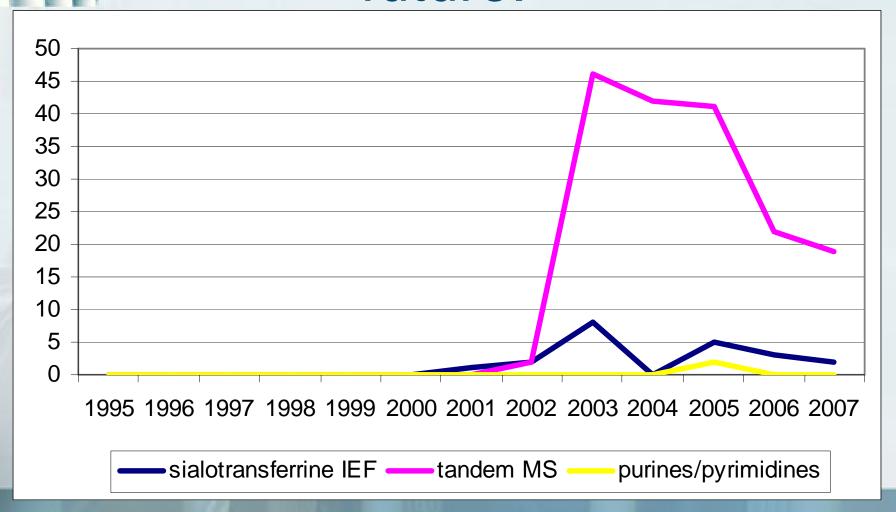


Specific metabolic tests and investigations done elsewhere:

Over 700 patients during 1990-2007:

 Urinary organic acid GC/MS 		154	
 Tandem MS screening (acylcarnitines) 		172	
- MPS, oligosaccharides, sialic acid in urine		136	
 Specific enzymatic tests for LSD 		100	
 Enzyme/DNA analysis for mitochondrial disease 34 			
- The confirmation of classical galactosemia 17			
 VLCFA in serum 	26		
 Isoelectric focusing of sialotransferrines 	21		
 7- dehydrocholesterol 	26		

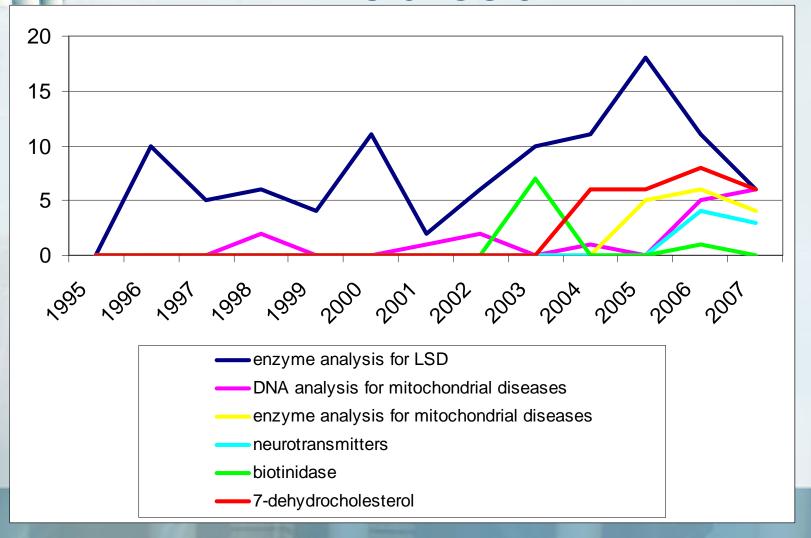
Tests developed out locally:



Training possibilities

- Biochemist K. Kall studied in Amsterdam MC in 2005 January (3w)
 → organic acid GC/MS, GUAA/creatine, VLCFA
- Biochemist K. Krabbi studied in Rotterdam Erasmus MC in 2006 (5m)
 - → urinary MPS, oligosaccharides

Tests to work out in the near future:



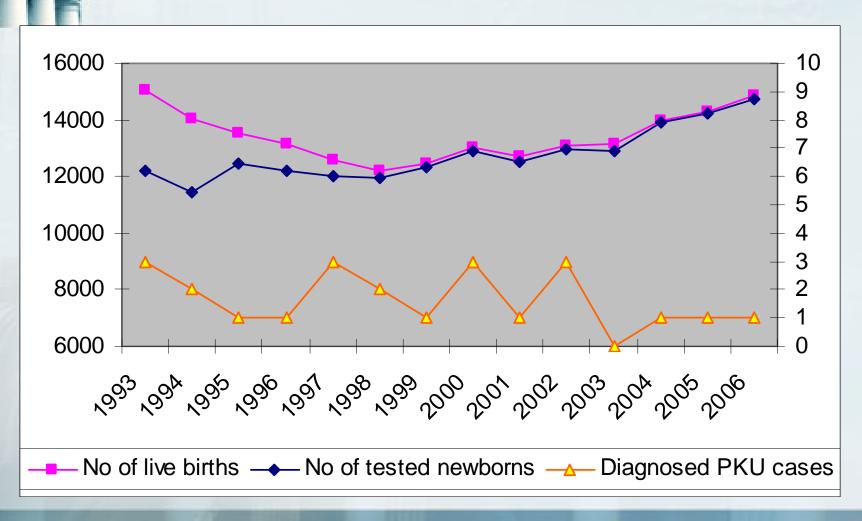
Tandem MS analysis

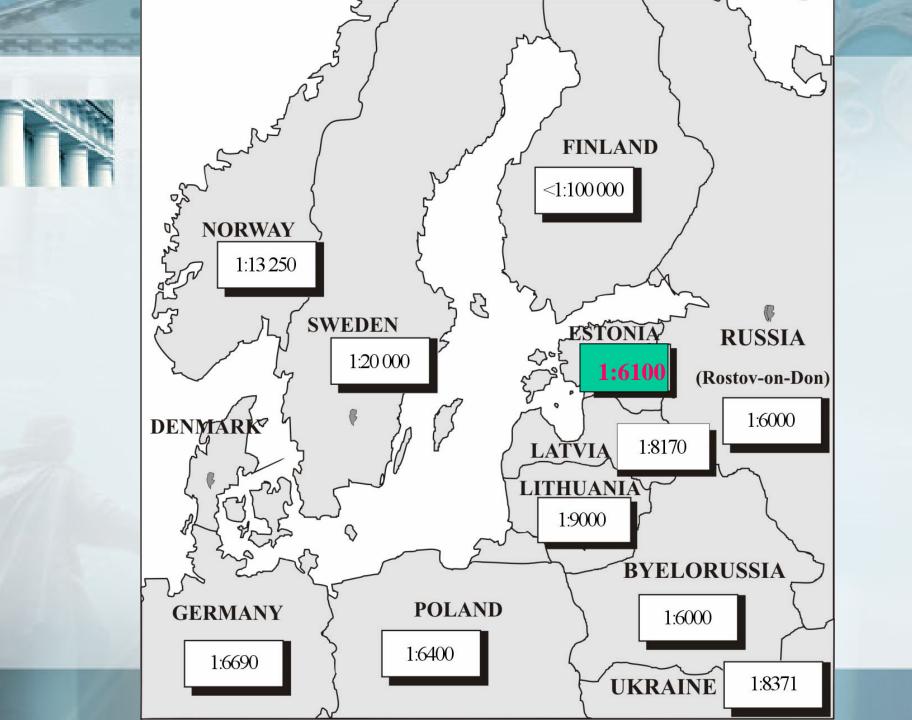
- 3200 Q-TRAP LC MS/MS mass spectrometer (Applied Biosystems, USA)
- In Department of Biochemistry of Tartu University
- Dr. K. Joost (ERNDIM scholarship) and biochemist K. Kilk will study in Amsterdam MS in May 2008

To continue ordering from abroad

Problems in ordering from abroad

- It takes time!
- The price list of our Health Insurance Fund (HIF) for BGT is ~3-4x lower than in developed EU countries
- Our HIF does not give us E112 form, but the give the guarantee letter, if we send
 - The application from MD
 - The application from parents
 - Answer within 2-4 weeks




Results during 1990-2007:

- In 123 patients the diagnosis of inherited metabolic disease was confirmed:
 - PKU 38 cases (31%)*
 - 24 during newborn screening program since 1993
 - 13 late diagnosed PKU cases
 - 1 prenatally diagnosed PKU case

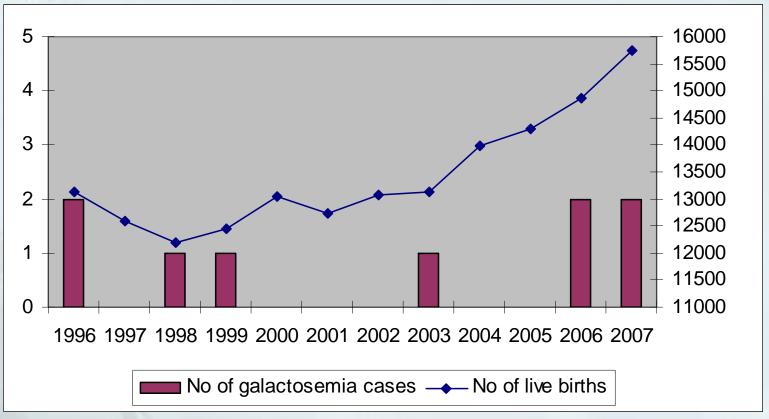
* There are altogether 77 PKU cases in the register (1979-2007)

PKU screening programme

Lysosomal storage disorders:

- 35 patients (28%) during 1990-2007
- Mucopolysaccharidoses (MPS) 14 cases
 - 8 patients with MPS II (Hunter syndrome)
 - 4 patients with MPS IIIA (Sanfilippo syndrome)
 - 2 patients with MPS VI (Maroteaux-Lamy s.)
- Others 21 cases

The livebirth incidence of MPS in Estonia 1:24,154


We excluded last 5 years (possible diagnostic time)

Other LSD

- Fabry disease5 (2 families)
- GM1 gangliosidosis
 3 (2 families)
- Gaucher disease
 3 (2 families)
- CLN type 2
- CLN type 1
- CLN type 32 (1 family)
- Tay-Sachs disease
- Metachromatic leukodystrophy 1
- Wolman disease
- Niemann-Pick disease

Classical galactosemia:

10 patients (8%), Birth prevalence is ~1:20,000

Mitochondrial disorders:

10 patients (8%) with mitochondrial disease:

- Leigh syndrome (2 patients)
 - Respiratory chain complex I deficiency (mtDNA mutation T10191C in ND3 gene)
 - Respiratory chain complex I and IV deficiency (mutations in SCO2 gene)
- Mitochondrial myopathy in a girl and her mother – respiratory chain complex I and IV deficiency
- PDH deficiency (2 patients)
- MELAS syndrome
- Kearns-Sayre syndrome (2 patients)
- LHON

Urea cycle disorders:

- 7 patients (6%) with urea cycle disorders:
 - 1 boy with hemizygous ornitine transcarbamylase (OTC) deficiency
 - 5 females with heterozygous OTC deficiency
 - 1 patient with argininemia

Fatty acid oxidation defects:

LCHAD

- One family with 2 children genotype
 1528G>C/IVS16-2A>G/A (Olsen et al.)
- One family with 2 children genotype1528G>C/ 1528G>C

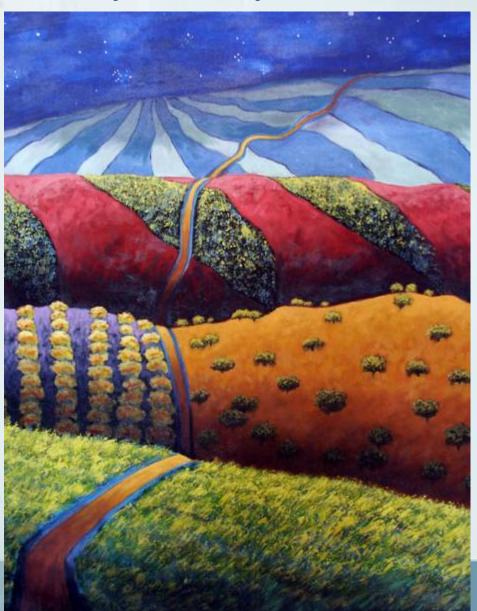
MCAD:

- We have not found any MCAD deficiency cases!
- The frequency of possibly affected homozygotes
 1 out of 193 000 (Lilleväli et al. 2000)

Other metabolic diseases:

- Alkaptonuria2
- Tyrosinemia type I
- Lysinuric protein intolerance
- Maple syrup urine disease
- Hyperornithinemia/gyrate atrophy (HOGA) 2
- Dihydropteridine reductase (DHPR) deficiency 1
- Aromatic L-amino acid decarboxylase (AADC) deficiency 2
- Hereditary fructose intolerance 1
- CDG la

Many thanks!


- Charite Virchow Klinikum
 - Prof. E. Mönch
- Gothenburg University
 - Dr. E. Holme
- Rotterdam Erasmus University
 - Dr. O.P.van Diggelen, Dr. J. Huijmans
- Amsterdam Free University
 - Prof. C. Jakobs, Dr. G. Salomons

Many thanks!

- Tallinn Childrens Hospital
 - Dr. R. Zordania, Dr. K. Joost
- Central Laboratory of Chemistry
 - K. Kall, K. Krabbi, T.-M. Laht
- Tartu University Hospital
 - Dr. T. Reimand, Dr. K. Muru, K. Varb

Thank you for your attention!

