Organic acids

Dr J R Bonham, Sheffield Children's Hospital, UK

Where do difficulties arise?

Pre – analytical Samples taken at the right time

Analogous to the poisoned patient

Analytical The challenges

- Biochemically heterogeneous
- Small amounts of key compounds are important
- Small sample size
- Episodic excretion
- Often performed only once
- Very often on Friday afternoon

Analytical So how do we perform?

MMA	100%
MCAD	100%
MMA	100%
Ornithine aminotransferase deficiency	100%
Hunter disease	100%
Ethylene glycol intoxication	96%
Glutaric aciduria type 1	94%
Cystinuria	<mark>93%</mark>
D-glyceric aciduria	93%
2-OH glutaric aciduria	92%
Malonic aciduria	92%
4-hydroxybutyric aciduria	91%
Hurler disease	87%

Analytical So how do we perform?

Biotinidase deficiency	82%
Morquio disease	82%
Hypophosphatasia	69%*
Homocystinuria	68%*
Fumarase deficiency	53% *
Peroxisomal disorder	46%*
Prolidase deficiency	<mark>38%</mark> *
Sialidosis	27%*

Analytical So how do we perform?

- In optimal conditions with specialist laboratories in straightforward samples
 - 93% of laboratories identify disorders
 - 1 in 14 are missed
- There are particular problems with less common or unusual biochemical presentations BUT we know that in practice heterogeneity is marked and QA samples are treated with extra caution

Analytical Some laboratories do well and others do not

- 3 urine samples sent 3 times pa
- Scored as 2,1,0 or -2
- Maximum score 18

Analytical

Technology does not solve the problem

No correlation with equipment

- Type of GCMS
- Type of column
- Method of extraction
- Software

No correlation with analytical method

- Type of extraction
- Oximation
- Use of extracted ion chromatograms
- Use of internal standards
- No correlation with the organisation of staff
 - Rotation or not
 - Type of staffing
 - Group or individual interpretation
 - Turn around time

Analytical Experience <u>is</u> important

Score vs Workload

Analytical Attention to detail <u>is</u> important

Analytical Education and awareness <u>are</u> important

Attendance at meetings

- mean score non-attendees 3.1
- mean score attendees 4.4
- P= 0.08

The ERNDIM proficiency scheme 2005

Samples in 2005

Patient 05.1

A 20 year old patient, who was born to non consanguineous parents. He is slightly retarded (stopped school at 12) but is working as a gardener. From 17 years old, he presented with opthalmalogical symptoms ascribed to allergy and from 18, palmer keratosis ascribed to verucca

This sample was obtained from a patient with tyrosinaemia type 2

Patient 05.2

A male aged 3 years, unexplained recurrent hypoglycaemia

This sample was from a healthy child of one of the laboratory staff

Patient 05.3

Male aged 6 years, rickets, ? Cause This sample was obtained from a patient with tyrosinaemia type 1

Samples in 2005

Patient 05.4

A male aged 13 years with dorsal kyphosis This sample was obtained from a patient with MPS type 4 aged 13 yrs Patient 05.5

A female aged 27 years with osteoarthritis This sample was from a patient with alkaptonuria

Patient 05.6

A female, aged 30 years, severe osteoporosis

This sample was obtained from a 30 yr old woman with classical homocystinuria

Scoring

Analytical results : Interpretative conclusions: Further testing advice: No return or incorrect findings *Maximum obtainable*

2 points 2 points 1 point 0 points

30 points

Sample 05.1

'ile : C:\MS perator : cquired : 23 Ma nstrument : Ins ample Name: PA 05 isc Info : ial Number: 29	DCHEM\1\DATA\OR r 2005 1:59 trumen /01 70576.K (NA	GACIDS\702 using A)	9.D cqMethod C	DA	Hept gly 10;	l- 44K	No hex Isub PPG No IVG MCG IEG No orotate / 40H No succote / Acte No 30H glut	GA
oundance 7000000			ті	C: 7029.D		.əl]
6500000					_	ctal		
6000000					pheny	a via		
5500000					ates	POL		
5000000					molofin			
1500000					7			
4000000								
3500000				1g	궠			
3000000				flate	cylo			
2500000				soor	Adra		IA &	
200000-	e e			-1-Ca ate	trate thate		Et Seu	7
1500000	yrate xlend	ale		exane trate	Aglyce		H Hyd	
1000000 मिसि 1000000	solut solut	uccin	ante a	erector Berry	tanoy C	ikata	Hhuja Tali	
-00000	20H	Open 4	, odių	14 of	Hep		401 Stea	

Results

Sample 05.1 Returns were received from all of the 26 participants

- All 26 participants noted an increased excretion of tyrosine
- 16/26 participants quantitated the excretion, mean tyrosine 87 µmol/L, SD 8.0 µmol/L
- 16/26 reported succinyl acetone not present or not detected
- 25/26 participants concluded that the most likely diagnosis was tyrosimaemia type 2, the remaining lab suggesting liver dysfunction
- **25/26 recommended quantitative plasma aminoacid analysis**
- 3/26 advised enzyme assay on liver biopsy material, 13/26 commented that this may <u>not</u> be indicated
- THIS WAS THE COMMON SAMPLE

Results

Sample 05.2 Returns were received from all of the 26 participants

- 22/26 laboratories clearly reported "no abnormality detected"
- Given the history of hypoglycaemia 25/26 laboratories indicated that further laboratory or clinical investigations were warranted
- 20/26 would have advocated blood/plasma acyl carnitine profile
- 9/26 indicating the need to obtain a urine sample during or shortly after a period of documented hypoglycaemia
- 5/26 laboratories would have recommended a controlled fast

Sample 05.3

ile perator quirec istrume imple N isc Inf ial Num	: C: r : 2 ent : Name: Pi fo : mber: 3;	:\MSDCF 3 Mar 2 Instru A 05/0: 1	HEM\1\? 2005 Imen 3 7057	DATA\C 3:23 8.B (Þ)RGACIDS usi NA)	(\7031 .ng Ac	.D qMeth	od Oł	ł	Hept glo	y 102 = 4	8K	√8	No No √ Suc No t	hex (306)PPC 10 IVG-(MCG-1) orstate /40 ccinylacehone xylacehone xylacehone tylacehone tylacehone	; IBG 169= 4014 345= 5 K
undance					_			TIC	: 7031.D	_		-	-			
500000												Te	a)			
000000												the	3	19	4	
500000										pt for		14		wa	1	
000000										reta		The	0	uha	5	
500000										plac		HOH	-	hh	0	
000000										hen		00	2	phe	4	
500000										dHe	tas	1		HOC		
000000										40	in the second	1		4	F	
500000											in.	ł			5	
000000										2-1	h	1	1		da	
500000												te.			ta	Sec. 1
000000			10)									the			Lo Lo	
500000			yeat								19	nylo			ma	
00000			(mp						sate	ome	ita	trac			6 te 60	
000000			B.a	B				×	an	cet	en i	high		.2	est face	
000000	.0)	19	The	nuc	h.			ama	ept tade	ale	lyce	the		toot	PPU State	
00000	tet	dat	solal	a a	Cei Part	ale		top	toh	inzo	AG	t phe		sebo	1997 F & a	,
000000	lac	OXO	H B	100 miles	Set of Set	na		esu	r-ke	SUS	tano	bot		SHO	144 144 145 145 145 145 145	
00000	Sty		- 30 20H	net -30	3	- En	1	. 00	her	4	hep	2		23	68 1/ 8	
			1.	A AN	and the second	a cha	A A	Achi	and that	A have	Addell	mall A	harre	mil	and the and	and and

Results

Sample 05.3 Results were received from al of the 26 participants.

- 24/26 commented upon an increased excretion of tyrosine
- 2/26 reporting a generalised aminoaciduria
- 15/26 quantitated tyrosine, mean= 331 µmol/L, SD 65
- All participants noted an increased excretion of tyrosine metabolites on urinary organic acid analysis
- 23/26 commented on a significant excretion of succinyl acetone or derivatives, 3/26 did not comment on succinyl acetone, one of these specifically indicating that this was "not deteced"
- 23/26 participants concluded that the patient suffered from tyrosinaemia type 1. 2/26 (both had not detected succinyl acetone) felt that tyrosinaemia type 1 was possible

Sample 05.4

F	Chondroitin sulphate	
	Keratan sulphate	

Results

Sample 05.4 Results were received from all 26 participants

- All 14 participants who made quantitative measurement of GAGS noted an increase
- 9/26 commented specifically on the excretion of keratan sulphate
- 24/26 participants, on the basis of laboratory findings or clinical description, considered that an MPS disorder was likely or possible
- 13/26 specifically considered MPSIV (Morquio disease) as a possibility
- 16/26 laboratories would have recommended enzyme analysis

Sample 05.5

File : Dperator : Acquired : Instrument : Sample Name: Misc Info : Vial Number:	C:\MSDCHEM\1\DATA\ORGACIDS\7601.I 19 Jul 2005 17:11 using AcqN Instrumen PATIENT 5.5 071543.Q (NA)(1day)	HeptCly 102 = 12K 158 = - Nethod 3M & Allaptruria	NO Hex/Sub/PPC NO IV C/ MCC/IBC NO OTO/40MBA NO SAUCAC/ACAC NO 30M Clut
Abundance	Osteoarthitis	TIC: 7601.D	
1e+07			aud
9000000			Misic
8000000			Hower
7000000		<i>r</i> ,	
6000000		vari du	
5000000		ti sid	grate
4000000		the sound	d infrare
3000000	3	nare to nare to nedica	A PON
2000000 1000000000000000000000000000000	- orability upper and our ton our ton Souting Souting the the the the	e cutaconto adagte tra cutato Cutato to canto dou da	> rigguatu

Results

Sample 05.5

Results were received from all 26 participants

- All 26 participants reported an increased excretion of homogentisic acid
- All concluded that the patient suffered from alkaptonuria
- 10/26 participants reported a generalised increase in aminoacid excretion
- All 6 participants who reported quantitative MPS noted an increased excretion, possibly due to interference
- 5/26 would have recommended that other family members should be investigated

Results

Sample 05.6

Results were received from all 26 participants

- 25/26 reported an increased excretion of homocystine, mean concentration 59 µmol/mmol cr
- Al participants who noted an increased excretion of homocystine concluded that CBS deficiency was the most likely diagnosis
- 24/25 participants asked for plasma aminoacid analysis and 20/25 would have requested a sample for total plasma homocysteine
- Only 9/25 commented directly on or the need to assess MMA excretion
- 16/25 would have recommended a therapeutic trial with pyridoxine.

ERN Lab No	05.1	05.2	05.3	05.4	05.5	05.6	Total Score
004	5	5	5	3	5	5	28
010	5	5	5	5	5	5	30
011	5	3	4	3	2	5	22
021	5	4	5	4	5	5	28
029	5	5	5	2	5	5	27
032	5	4	5	2	5	5	26
042	3	3	3	3	-5		22
060	5	5	5	3	5	5	28
066	5	4	5	5	5	5	29
099	4	4	5	2	5	5	25
100	5	4	5	5	5	5	29
104	5	4	4	5	5	5/	28
107	5	4	4	5	5	5	28/

ERN Lab No	05.1	05.2	05.3	05.4	05.5	05.6	Total Score
110	5	4	5	2	5	5	26
114	5	5	5	5	5	5	30
117	5	4	5	5	5	5	29
142	5	4	5	5	5	5	29
149	5	4	5	3	5	5	27
158	5	4	5	0	5	5	24
175	5	5	5	2	5	5	27
194	5	4	5	5	5	5	29
240	5	3	5	3	5	5	26
251	5	4	5	2	5	0	21 /
284	5	5	3	0	5	5	23
285	5	4	5	2	5	5	26
293	5	4	1	2	3	5	20

The NEQAS Orotic acid scheme

Performance

Distribution	Mean µmol/mmol cr	Range µmol/mmol cr	Normal	Equivocal	High
Sept 05	1.7	0.5-5.0	11	0	1
	2.1	1.5-4.5	12	0	0
	3.0	2.0-6.0	12	0	0
Aug 05	51.0	36.0-68.0	0	0	11
	50.0	40.0-60.0	0	0	11
	50.0	40.0-64.0	0	0	11
May 05	2.0	0.5-4.5	10	1	0
	4.8	3.5-6.5	3	6	2
	5.5	3.5->8.0	3	5	3
Mar 05	1.2	0.5-3.0	9	0	0
	2.8	2.0->6.0	8	0	1
	9.8	8.0->16.0	0	4	5

Performance

Distribution	Mean µmol/mmol cr	Range µmol/mmol cr	Normal	Equivocal	High
Dec 04	2.0				
	4.9				
	5.8				
Oct 04	1.6				
	3.2				
	9.6				
Aug 04	48.9				
	48.7				
	50.9				
Jun 04	100.9				
	8.1				
	37.9				
Apr 04	73.8				
	101.0				
	51.7		Í		/ /
Feb 2004	47.6				
	48.6				
	49.0				

Performance

Distribution	Məan µmol/mmol cr	Range µmol/mmol cr	Normal	Equivocal	High
Dec 04	2.0	1.0-6.0	11	0	0
	4.9	3.0-7.0	4	7	0
	5.8	3.0-7.0	4	6	1
Oct 04	1.6	0->6.0	9	1	0
	3.2	1.5->6.0	9	1	0
	9.6	5.0->16.0	1	2	7
Aug 04	48.9	36.0-64.0	11	0	0
	48.7	36.0-64.0	11	0	0
	50.9	32.0-60.0	11	0	0
Jun 04	100.9	40.0-130.0	11	0	0
	8.1	0-12.0	1	4	6
	37.9	5.0-60.0	1	0	10
Apr 04	73.8	41.0-91.0	0	0	9
	101.0	58.0 <mark>-116.0</mark>	0	o	9
	51.7	25.0-62.0	0	O	9
Feb 2004	47.6	8.0-68.0	0	0/	7
	48.6	16.0-66.0	0	o	8
	49.0	16.0-58.0	0 /	/o/	8

Conclusions

We know that there is a problem in the range 4.0-10.0 µmol/mmol creat We don't know but could find out whether this is analytical or interpretative Could things be improved with a calibrant? Could things be improved by adopting clear guidance for interpretation?