

ERNDIM Diagnostic Proficiency Testing is an important Tool in Determining Quality of Laboratory Diagnosis in a wide Range of Inborn Errors of Metabolism

Brian Fowler¹; Jim Bonham², Petr Chrastina³; Joanne Croft²; Viktor Kozich³; George Ruijter⁴; Christine Saban⁵

1. University Children's Hospital, Basel/Zürich - Switzerland; 2. Children's Hospital, Sheffield – United Kingdom; 3. Institute of Inherited Metabolic Diseases, Prague – Czech Republic; 4. Erasmus Medical Center, Rotterdam – Netherlands; 5. Service Maladies Héréditaires du Metabolisme, Bron-Lyon - France

	Background & Discussion	
Introduction ERNDIM (www.erndim.org) aims to improve the quality of diagnosis and monitoring in patients with inborn errors of metabolism (IEM) through quality	 Aims & Method 273 samples from 83 different conditions (some no IEM), sent to up to 105 laboratories, mainly European but also worldwide. Organising centres - Czech Republic, France, Netherlands, Switzerland, and United Kingdom, now sent centrally (CSCQ, 	 Conclusions Overall performance is fairly good, emphasising that a definitive diagnosis is not always possible with urine alone. Evidence of improved performance repeat distributions ERNDIM diagnostic proficiency testing valuable for:

assurance programmes and educational activities. Diagnostic proficiency testing schemes focus on the ability of laboratories to identify and interpret abnormalities in natural urine samples reflecting a wide range of IEMs.

Switzerland).

- Six samples / year, one common to all centres, sent with clinical information.
- Laboratories choose and perform tests (limited amount of
- urine) needed to reach a diagnosis using analysis of one or more of amino acids, organic acids, mucopolysaccharides, oligosaccharides and purines and pyrimidines

Results

- informing accreditation
- assessing individual laboratory performance
- identifying methodological and technical challenges
- contributing to improved diagnostic approaches.
- Clinicians must be aware that laboratory testing for IEM can be difficult and results need to be viewed with caution. Ask your lab "Do you participate in ERNDIM"

Performance criteria: analysis and interpretation scores and lack of critical error (defined as an error that would be unacceptable to the majority of labs and would have a serious adverse effect on patient management).

Diagnostic proficiency: overall combined scores for analytical findings and interpretation, ranged widely from below 50% for challenging samples to 100% for more straightforward ones.

Participant performance: (figure) diagnostic proficiency (average % of total points possible for all participating laboratories within all schemes for all samples) was:

amino acid disorders, range 14-100; organic acid disorders, range 44-100; mucopolysaccharide disorders, range 67-93 oligosaccharide disorders, range 28-99: purine/pyrimidine disorders, range 12-93; miscellaneous disorders, range 17-91; <u>no IEM, range 65-95.</u> **Re-distributed samples** within the same centre – improved performance 21 cases (average 15%): no clear improvement seen in 13

Table: Overall diagnostic proficiency in individual IEMs: #Common Sample;

Amino Acid disorders (26) -	- 79 samples distributed
-----------------------------	--------------------------

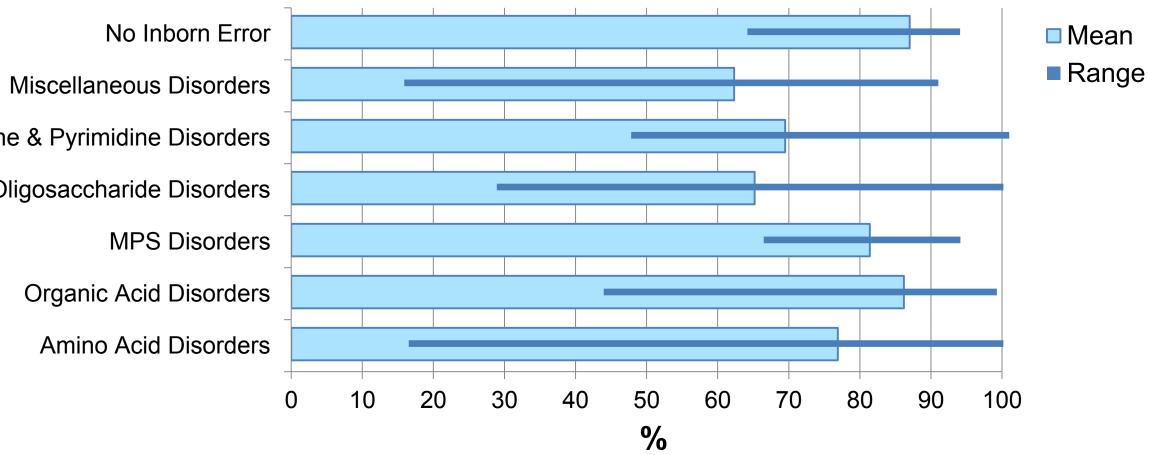
Disorder	n			Change on Repeat
alpha-AA semialdehyde synthase deficiency #	1	70		
Aminoacylase 1 deficiency	3	35-58	51	
argininosuccinate lyase deficiency	12	75-100	88	25+/0/26+
Aromatic L-Aminoacid Decarboxylase deficiency	2	14-65	40	
branched chain aminoaciduria intermittent #	1	88		
branched chain aminoaciduria (MSUD)	2	93-100	97	
Citrullinaemia	4	94-99	97	1+
Cystine / dibasic aminoaciduria	6	89-100	94	11- / 7+
Cystinosis	1	61		
Formiminoglutamic aciduria	2	33-46	40	13+
Hartnup disease	2	76		
Hawkinsinuria	1	64		
HHH syndrome (treated with citrulline) #	3	50-80	70	4-/5+
Homocystinuria due to CBS deficiency #	5	67-96	87	5+ / 4+ / 21+
Homocystinuria mild	1	26		
Hypermethioninaemia /0 (MAT1A gene).	2	62-76	69	
Hypophosphatasia (one sample juvenile form) #	4	51-100	79	27+
Iminodipeptiduria	6	48-86	70	9+/38+
LPI / Dibasic amino aciduria #	4	82-96	90	4-
Non-Ketotic Hyperglycinaemia	2	87-98	92	
Ornithine Amino Transferase deficiency	3	92	92	
Ornithine Carbamyl Transferase deficiency	3	77-85	81	
Phenylketonuria	2	87-98	93	11-
Taurinuria (Red Bull intake)	1	88		
Tyrosinaemia type 1	1	98		
Tyrosinaemia type II	1	100		

Organic Acid disorders (32) – 89 samples distributed

Disorder	n	Range	Mean	Change on Repeat
2-hydroxyglutaric aciduria	6	91-100	97	5-
3-Me-glutaconyl hydratase deficiency	1	80		
3-methylcrotonyglycinuria	2	99-100	99.5	
Beta-ketothiolase deficiency (ACAT1)	5	83-97	91	2+ / 7-
Ethylmalonic encephalopathy (ETHE1)	1	98		
Fumarase deficiency	4	78-98	90	7+
Glutaric acidaemia type I	8	89-100	96	0
Glyceroluria Xp21 contiguous gene deletion	4	80-96	92	16+
HMG-CoA-Iyase deficiency	2	96-100	98	
Homocystinuria /Methylmalonic / cblC	4	72-97	84	6-/8-
homogentisic acid oxidase deficiency	3	94-100	94	
Hyperoxaluria type 2 [#]	1	87		
Hyperoxaluria type I	2	72-80	76	
Isovaleric acidaemia	4	95-100	97.5	
long chain acylCoA dehydrogenase deficiency	2	56-71	63	
Malonic and MMA / ACSF3 gene	2	54-67	60	
Malonyl CoA decarboxylase deficiency	1	97		
MCAD deficiency	3	93-96	95	
Methylglutaconic aciduria/ Barth Syndrome	4	66-79	73	1-
methylmalonic aciduria Isolated /cblA	6	92-100	96	1-
Methylmalonic semialdehyde dehydrogenase def.	1	81		
Mevalonic aciduria	3	78-99	85	21+
2-Methyl-3-hydroxybutyryl-CoA dehydrogenase def.	1	44		
Multiple acyl-CoA dehydrogenase def.	3	85-99	90	
N-acetylaspartic aciduria	2	95	95	
NFU1 deficiency	1	79		
Oxoprolinase def.	1	91		
Propionic aciduria	3	96-100	99	4-
Short chain acyl CoA dehydrogenase deficiency	3	83-91	88	
Short chain hydroxyl acyl CoA dehydrogenase def.	1	89		
Short/branched-chain acyl-CoA dehydrogenase def.		79		
Succinate semialdehyde dehydrogenase def. (4HB)		81-92	86	8+

MPS & Lipid Storage disorders (11) - 53 samples distributed					
Disorder	n	Range	Mea	n Change on Repeat	
Mucopolysaccharidosis type 1	7	81-93	87	6+ / 10-	
Mucopolysaccharidosis type 4A	9	73-86	80	10+ / 0 / 6+	
Mucopolysaccharidosis type 2	7	83-92	87	9+ / 1-	
Mucopolysaccharidosis type 3 [#]	7	67-90	77	12+ / 30- / 12+ / 19+	
Mucopolysaccharidosis type 6	4	72-88	76	4+	
alpha-mannosidosis	5	74-99	88		
Aspartylglucosaminuria	5	45-83	62		
Fucosidosis	2	62-80	71		
GM1 gangliosidosis	3	59-79	68	7-	
Salla disease [#]	1	28			
Sialidosis due to neuraminidase deficiency #	3	55-85	74	0	

Purine & Pyrimidine disorders (8) – 22 samples distributed


	\ /				
Disorder	n	Range	Mea	an Change	on Repeat
Adenylosuccinate lyase deficiency	4	37-62	42		
Dihydropyrimidine dehydrogenase deficiency	1	93			
Dihydropyriminidase deficiency	1	80			
Lesch-Nyhan Disease	5	12-81	50	29+	
MNGIE / Thymidine phosphorylase deficiency	6	50-91	73		
Molybdenum cofactor deficiency	3	51-82	70		
Purine nucleoside phosphorylase deficiency	1	74			
Xanthine Oxidase deficiency	1	74			

Miscellaneous disorders	(6)) – 7	samples	distributed	
-------------------------	-----	-------	---------	-------------	--

Disorder	n	Range	Mean Change on Repeat
DOPA therapy	1	91	91
Essential fructosuria	1	17	17
Ethylene glycol intake	1	91	91
Galactosemia	2	51-100	75 49+
GAMT deficiency #	1	52	52
Adenine phosphoribosyltransferase def. + MPS 4	1	50	50
No evidence of an IEM	23	65-95	87

Figure No Inborn Error **Miscellaneous Disorders** Purine & Pyrimidine Disorders **Oligosaccharide Disorders**

Overall proficiency, all centres

