ERNDIM QC Schemes

Diagnostic Proficiency Scheme

Practice at Reporting and Interpretation

ERNDIM Proficiency Scheme: Design

Clinical picture Lab results and interpretation **Pre-investigations** Amino acid analysis Organic acid analysis Purines/pyrimidines analysis Mucopolysaccharide analysis **Oligosaccharide** analysis Other analyses performed **Analytical Proficiency** Interpretation(diagnosis) Advice for follow up investigations

2 points 2 points

- Appropriate assay/method not used/available
- Incorrect analyte recognition
- Incomplete analyte recognition
- Correct analyte recognition BUT incorrect interpretation
- **Incorrect** confirmatory test

Appropriate assay/method not used/available

 e.g. Guanidinoacetate methyltransferase deficiency

Sample F: GAMT deficiency

Patient: a 7-year old girl with developmental retardation, in particular speech delay. She has epilepsy, for which she is treated with valproic acid.

Analytic: elevated guanidinoacetic acid: 640 mmol/mol (ref. values <129)

Guanidino-acetic acid in plasma 27.2 umol/L (ref values 0.5-3.6),

Interpretation: guanidino-acetic acid methyltransferase (GAMT, EC 2.1.1.2) deficiency (OMIM 612736)

Analytical performance: Measurement of guanidinoacetic acid and creatine was critical for this sample. Those labs (**11 of 19**) that performed these assays found the relevant abnormality.

Interpretative proficiency: Interpretation is straightforward and was correct in all cases in which the relevant analysis was performed.

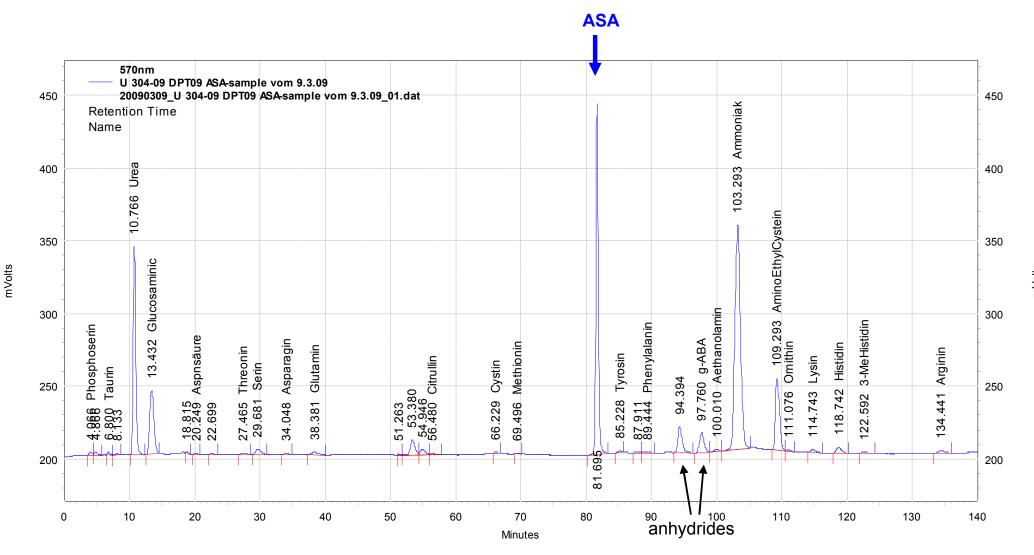
Recommendations: Measurements of GAA and creatine in plasma backed up by GAMT enzyme and / or mutation analysis (601240) was considered helpful.

	n	Points
Guanidino-acetate methyltransferase deficiency (GAMT)	11	2
Glycinuria secondary to valproate medication.	2	0
No diagnosis obtained	5	0
biotinidase deficiency	1	0

Incorrect analyte recognition

e.g. Arginino succinic aciduria

Patient: this sample came from a 20 year old male patient with ASAuria (OMIM 207900) who is under treatment with arginine. This sample was also distributed in 2009.


Analytical performance: Two points were given for identification of ASA and//or its anhydrides. **18 of 20** labs identified key metabolites pointing to the correct diagnosis.

Interpretative proficiency: The correct diagnosis was arginino-succinic aciduria due to ASA-lyase deficiency (EC 4.3..21). 18/20 labs made the correct diagnosis.

Overall impression: All labs should be able to identify arginino-succinic acid and its anhydrides, there appear to be some difficulties in identification on some amino acid analysers.

	n	Points
Argininosuccinic aciduria due to	18	2
argininosuccinate lyase deficiency)		
Hyperprolinaemia	1	0
VinyIGABA therapy	1	0

Amino acid analysis by lon exchange chromatography

Incomplete analyte recognition

e.g. Combined malonic and methylmalonic aciduria due to mutations in the ACSF3 gene.

Patient: At 20 y. of age investigated for bowel problems and serum methylmalonate was elevated. Urinary organic acid analysis showed methylmalonate, 73 mmol/mol creat. and malonate, 13 mmol/mol creat. Two mutations in the ACSF3 gene were identified.

Analytical performance*:* The finding of increased methylmalonic acid was scored with one point (20 labs) and increased malonic acid with one point (10 labs).

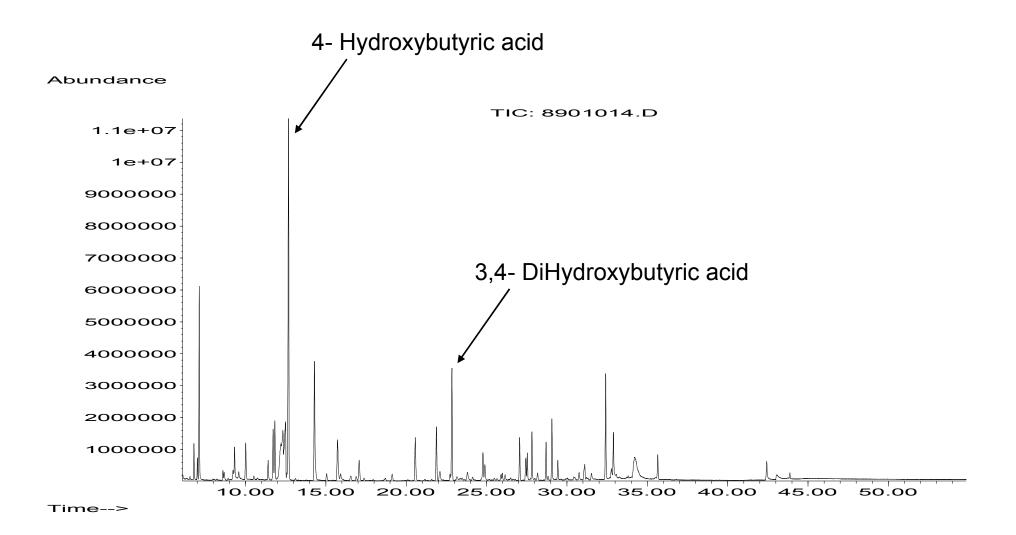
Interpretative proficiency: The correct diagnosis was combined malonic acid and methylmalonic aciduria scoring two points (9 labs). Other diagnoses based on finding methylmalonic acid alone were scored with 0 points.

Overall impression: This was a fairly difficult sample but it was clearly possible to detect increased malonic acid as reported by ten labs pointing to the correct diagnosis.

Combined malonic and methylmalonic aciduria	9	2
Malonic aciduria	1	0
Mild MMA/B12 deficiency	10	0

Correct analyte recognition BUT incorrect interpretation e.g. 4-Hydroxybutyric aciduria

Patient: The urine was obtained from a 7 months old patient with confirmed 4-hydroxybutyric aciduria (succinate-semialdehyde dehydrogenase deficiency, EC 1.2.1.16).


Analytical performance: The finding of 4-hydroxybutyric acid with or without other key metabolites such as 3,4-dihydroxybutyric acid was considered to be correct. Overall performance was high at 95%.

Interpretative proficiency: The correct diagnosis was considered to be 4-hydroxybutyric aciduria due to SSADH deficiency (OMIM 271980). Proficiency for interpretation for this sample was also good at 90%.

Lab X

Analytical:4-Hydorxybutyric acid 71 mmol/mol Creat. (Ref <10)</th>2 pointsInterpretation: Mucopolysaccaridosis (tentative)0 pointClinical suggestion0 point

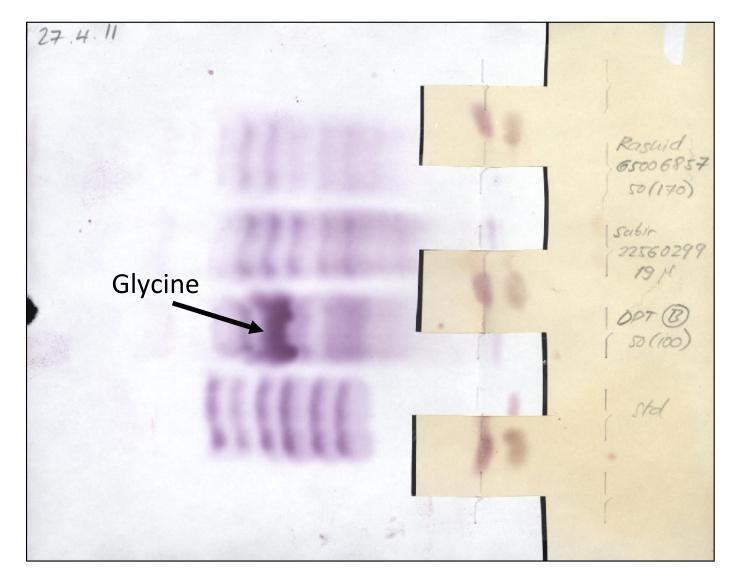
Sample D: Total Ion Chromatogram

Incorrect confirmatory test

e.g. Non-ketotic hyperglycinaemia

Patient:

The patient was diagnosed with non-ketotic hyperglycinaemia (OMIM 605899) due to high CSF and plasma Glycine, subsequently confirmed by enzyme assay


Analytical performance: All but one lab found greatly elevated glycine. Overall analytical performance was 95 %.

Interpretative proficiency: a diagnosis of non-ketotic hyperglycinaemia (glycine encephalopathy) was considered correct. Overall performance in interpretation was 85 %.

Recommendations: Analysis of glycine in **both** plasma and CSF was considered essential and glycine cleavage enzyme (EC 2.1.2.10) and mutation analysis (*GLDC*, 238300) as helpful.

	n	points
Plasma and CSF glycine	15	1
Plasma glycine	2	0

High Voltage Electrophoresis

