University College London Hospitals

Laboratory investigation of metabolic stone disease with emphasis on primary hyperoxaluria

Gill Rumsby PhD Consultant Biochemist (HSL Analytics @UCL Hospitals)

Aim

- Introduction to metabolic stone disease
- Basic laboratory investigations and factors affecting interpretation
- Specialist testing
- Role of genetic testing

uclh

Introduction

- Renal stone disease affects up to 10% of the population in the Western world
- Risk factors:
 - Fluid intake
 - Occupation
 - Dietary
 - Drugs
 - Developmental disorders
 - Genes

Metabolic stone disease

- Arising from derangement of a metabolic pathway, inherited or acquired
- Higher index of suspicion if a child, bilateral stones, recurrent stone former, consanguinity in family
- Leading to:
 - too much of an insoluble substrate, e.g. dihydroxyadenine
 - diversion to an insoluble product, e.g. oxalate
 - failure of transport, e.g. cystine
 - loss of stone inhibitors, e.g. effect of topimirate on citrate

Analysis of stone

- Helpful for the following reasons:
 - Can identify rare stone types and thus initiate appropriate investigations
 - Can direct treatment
- Only useful if laboratory analysis is good
 - Wet chemistry tests are prone to problems
 - Infra red analysis preferred but requires expertise to interpret
 - The % of components is a useful indicator

EQA scheme findings

NHS Foundation	on Trus
----------------	---------

Stone material sent out		
Cystine	2/30 labs did not recognise	
Protein (Albumin)	1 cystine 1 xanthine 1 carbonate, CaOx	
Silica	2 infrared labs failed to recognise this, one calling it carbonate 4 wet chemistry found CaOx	

Investigations for stone formers

24h plain urine

- Volume
- Creatinine
- Sodium
- Urate

uclh

- Protein
- Cystine (spot test)

24h acidified urine

- Volume
- Creatinine
- Calcium
- Oxalate
- Citrate
- Magnesium

Does it have to be a 24h collection?

Random	24h
Easy for patient	Inconvenient for patient
Affected by dietary intake prior to collection	Smooths out dietary influences
Affected by concentration (normalise on creatinine)	Affected by under and overcollection

Urine oxalate excretion vs ox:cre ratio

Do sex-related reference ranges fit better for adults?

Interpretation of urine oxalate results Change in oxalate:creatinine with age

n=6569

uclh

Clifford-Mobley, Tims & Rumsby, 2015

More specialised testing

- Organic acid profile
 - May pick up oxalate, glycerate but less reliable than specific assays
- Purines
 - Urine purines and enzymology if purine disorder suspected,e.g DHA stone (APRT deficiency) or very low serum uric acid as indicator of Xanthine dehydrogenase defy.
- Primary hyperoxaluria metabolites
- Cystine quantitation

Cystinuria

- Two genetic defects recognised, SLC3A1 (type 1) and SLC7A9 (non type 1)
- Heterozygotes for non type 1 may show increased cystine

Screening test with Na nitroprusside and cyanide. Positives are quantitated by amino acid chromatography

Genes implicated in metabolic stone disease

- Stone type
- Calcium oxalate
 - Primary hyperoxaluria types 1, 2 and 3 (AGXT,GRHPR, HOGA1)
 - SLC26A1 transporter
- Cystine
 - SLC3A1, SLC7A9
- Purine stones
 - APRT, XDH, MOCOS
- Calcium phosphate
 - Dent's disease CLCN5

University College London Hospitals NHS

NHS Foundation Trust

Primary hyperoxaluria

Preliminary diagnosis of Primary hyperoxaluria

- Raised urine oxalate on more than one occasion
- Exclude diet, GI disease
- Analysis of metabolites
 - Glycolate
 - Glycerate
 - 4-Hydroxy-2-oxoglutarate (HOG) and dihydroxyglutarate (DHG)
- Plasma oxalate
 - Of limited value and only for patients in renal failure

NHS Foundation Trust

Age of presentation of PH

Williams et al. 2011

NHS Foundation Trust

Ox/Cre ratio in all patients according to dx

Clifford-Mobley, Tims and Rumsby, 2015

Use of PH metabolites to make a preliminary diagnosis

Use of PH metabolites to make a preliminary diagnosis

Enzyme activity

- Measurement of enzyme activity and immunoreactivity
- Only available for PH1 and PH2
- Liver biopsy required
 - Sample integrity a problem
 - interpretation
- Fallen out of favour

Genetic testing

- Confirmation of disease
 - Implications for treatment, e.g. Primary hyperoxaluria liver-kidney tx vs renal transplant only
 - Responsiveness to pyridoxine treatment (PH1 only)
- Allows testing of other family members, including prenatal diagnosis in severely affected cases
- Removes ambiguity that can sometimes occur with biochemical testing.

University College London Hospitals

Infantile onset

- Full term delivery
- 2 month, hypocalcaemic tonic-clonic seizures, renal failure, acidosis
- Bilateral echogenic kidneys, on biopsy showing oxalate crystals
- Age 4 months

- Urine ox/cre 685 umol/mmol (<98)
- Plasma oxalate 307 umol/L (creatinine 246 umol/L)

Further investigations

- Genetic testing carried out for PH1
- c.[508G>A][466G>A] (p.Gly170Arg, Gly156Arg)
- Dx: consistent with primary hyperoxaluria type 1
 - Living-related liver transplant
 - Kidney transplant age 7y

Downside of genetic testing

- Significance of changes found
 - Gene specific database <u>http://www.uclh.nhs.uk/phmd</u> also submitted to ClinVar
 - Includes reported variants plus expression data where available
- What if only a single pathological mutation found?
 - Affected but other mutation not identified?
 - Some other disease and incidental finding of carrier status?

Single mutation only

Carrier or affected, with undiscovered other mutation?

*Symptomatic

Liver bx: AGT activity just below normal, not as low as index

uclh

AGXT: c.603C>A <u>heterozygous</u> HOGA1: c.569C>T (p.Pro190Leu) Final dx: PH3!

Index case

Dx PH1 by liver biopsy (nil AGT activity)

DNA: AGXT: c.603C>A homozygous

Confirmed PH1

Role of patient registries

- Rare diseases
- Registries allow information to be accrued about natural history of disease
- Identifies patients for clinical trials
- Laboratories should be encouraged to flag up registries when reporting
- But: requires a lot of effort on behalf of clinicians to input data

Summary

- Metabolic stone is rare and often takes a long time to make a diagnosis
- Should be considered in anyone presenting in childhood or with recurrent bilateral disease
- A combination of biochemical and genetic testing provides the best approach to diagnosis

uclh