

Glycosaminoglycans by LC-MS/MS

Frédéric Vaz, Ph.D. Clinical Biochemist IEM

Laboratory Genetic Metabolic Diseases (Lab GMD) Academic Medical Center Amsterdam, the Netherlands

Glycosaminoglycans (GAGs)

- Glycosaminoglycans or *mucopolysaccharides* because of their viscous, lubricating properties, as found in mucous secretions
- Present on all animal cell surfaces in the extracellular matrix (ECM)
- Known to bind and regulate chemokines, cytokines, growth factors, morphogens, enzymes and adhesion molecules

Glycosaminoglycan structure

 GAGs are long, unbranched, negatively charged heteropolysaccharide chains generally composed of a repeating disaccharide unit:

Glycosaminoglycans properties

- At neutral pH, GAGs are highly negatively charged (carboxyl and sulfate groups)
- GAGs in aqueous solution are surrounded by a shell of water molecules → occupy an enormous hydrodynamic volume in solution
- Low compressability

Glycosaminoglycan types

- Heparin/Heparan sulfate
 - (N-acetlyl)glucosamineglycans
- Chrondroitin sulfate/Dermatan sulfate
 - (N-acetly)galactosaminoglycans
- Keratan sulfates
 - Galactose instead of uronic acid
- Hyaluronic acid
 - Non sulfated

Glycosaminoglycan structure

GAGs are linked to core proteins (except for hyaluronic acid) = proteoglycans or **mucopolysaccharides**

Glycosaminoglycans properties

- Heparin/Heparan sulfate (HSGAGs)
- Chrondroitin sulfate/Dermatan (CSGAGs)
 - O-linked glycans
- Keratan sulfate
 - N-linked or O-linked glycans

Synthesised in the golgi

- Hyaluronic acid
 - Direct secretion in extracelullar matrix from plasma membrane

Glycosaminoglycans functions

- Many functions:
 - Heparin/Heparan sulfate (HS)
 - Histamine storage in mast cells (heparin)
 - Anticoagulant, LPL release (heparin)
 - Cell adhesion, regulation of cell growth
 - Chondroitin sulfate (CS)
 - Most abundant GAG in the body
 - Found in cartilage, tendon, ligament, aorta
 - Dermatan sulfate (DS)
 - Found in skin, blood vessels, heart valves
 - Keratan sulfate (KS)
 - tissue hydration, anti-adhesive
 - Found in cartilage and cornea
 - Hyaluronic acid
 - Major component of synovial tissues and fluid, vitreous body (eye)
 - Excellent lubricator and shock absorber

Mucopolysaccharidoses and mucolipidoses

Туре	Eponym	Enzyme deficiency	Storage product*
MPS I	Hurler,	α-L-iduronidase	DS, HS
	Hurler/Scheie,		
	Scheie		
MPS II	Hunter	Iduronate-2-sulfatase	DS, HS
MPS III A	Sanfilippo A	Heparan-N-sulfatase	HS
MPS III B	Sanfilippo B	N-acteyl-α-glucosaminidase	HS
MPS III C	Sanfilippo C	Acetyl-CoA:α-glucosaminide N-acetyltransferase	HS
MPS III D	Sanfilippo D	N-acetylglucosamine 6-sulfatase	HS
MPS IVA	Morquio A	Galactose-6-sulfatase	KS, CS
MPS IVB	Morquio B	β-galactosidase	KS
MPS VI	Maroteaux-Lamy	N-acetylgalactosamine-4-sulfatase	DS
MPS VII	Sly	β-glucuronidase	DS, HS, CS
MPS IX	2	Hyaluronidase	Hyaluronan
MLII	I-cell disease	N-acetylglucosaminyl-1-phosphotransferase	GAGs, sphingolipids
ML III	Pseudo-Hurler polydystrophy		an 20 - 856 Ar

* DS: Dermatan sulfate, HS: Heparan sulfate, CS: Chondroitin sulfate, KS: Keratan sulfate, GAGs: glycosaminoglycans.

- Deficiency of lysosomal enzymes of GAGs degradation cause mucopolysaccharidoses and mucolipidoses
- Accumulation of GAGs in urine is a diagnostic marker

Mucopolysaccharidoses and mucolipidoses

- Main screening test is dimethylmethylene blue (DMB) test
- If elevated \rightarrow mucopolysaccharide electrophoresis
 - Reagent increasingly difficult to obtain
 - Not specific
 - Many false positives

- False negatives (MPS III and IV and mild patients)
- New assay needed
 - Methanolysis \rightarrow only HS and DS (not KS!)
 - Enzymatic digestion of GAGs to dissaccharides ightarrow analyse

Disaccharide nomenclature

- Abbreviated disaccharide nomenclature
- Easier than old (and long) system
- Cryptic at first but useful

N-Acetylgalactosamine (GalNAc)
 N-Acetylglucosamine (GlcNAc)

Glucuronic acid (GlcA)
 Iduronic acid (IdoA)

Lawrence, R et al, 2008. Disaccharide structure code for the easy representation of constituent oligosaccharides from glycosaminoglycans. **PMID: 18376390**

Disaccharide nomenclature

Lawrence, R et al, 2008. Disaccharide structure code for the easy representation of constituent oligosaccharides from glycosaminoglycans. **PMID: 18376390**

Non-reducing end descriptor
U = undesignated uronic acid
$D = \Delta^{4,0}$ -unsaturated uronic acid
G = glucuronic acid
I = Iduronic acid
g = galactose
Hexosamine descriptor
A = glucosamine
a = galactosamine
M = anhydromannose
T = anhydrotalose
Amine substitution
H = free amine
A = N-acetylated
S = N-sulfated
R = amino-tagged
Hexosamine O-sullation
0 = No sulfation
3 = 3-O-sulfation
4 = 4-O-sulfation
6 = 6-O-sulfation
9 = 3,6-O-disulfation
10 = 4,6-O-disultation
10 = 4,6-O-disultation
10 = 4,6-O-disultation
10 = 4,6-O-disultation Non-reducing end O-sulfation 0 = No sulfation 2 = 2-O-sulfation
10 = 4,6-O-disultation Non-reducing end O-sulfation 0 = No sulfation 2 = 2-O-sulfation 3 = 3-O-sulfation

Financial issue

• GAG degrading enzymes are REALLY expensive

– One incubation = ~100 euro!!

• Express your own!

	Nucleoticle Position				
Pperura	pei-ito	pEI-IIB	pEI-IIC	pet-tid	
T7 promoter with fac operation	13	1 43	1 (3	1 . 3	
risecona binding dia (KBS)	71.80	24.90	74 30	74 82	
Isdall pT-Fusion Next #FF-11d charing sim-	84-91	10-91	Ta-7'	06-91	
TZ gene 10 honoloted leader	82-121	09-121	59-121	011-120	
Banki I diovina Sta	*25-130	124-25	123-128	122-127	
TF territatis	79-245	193-244	197-243	196-342	
amoicílin researce (blai CRF	637 1014	0\$5 513	155 512	654 1511	
p86.822 origin of regionism	009-2832	1656-2581	1685-2933	1562.2329	
kaPmpeyn CRF	4212-5223	4211-3292.	4210-3287	4207-52EB	

Expression of GAG degrading enzymes

- All enzymes were expressed as His-tagged fusion proteins in E. coli
 - Keratanase II: Bacillus circulans
 Chondroitinase B: Pedobacter heparinus
 DS
 - Heparinase II: Flavobacterium heparinum HS
- Purify enzymes on HisLink Protein Purification Resin
- After dialysis, snap-freeze in liquid nitrogen and store at -80°C.

Enzymatic hydrolysis of GAGs

- Enzymatic hydrolysis of GAGs to disaccharides:
 - 50 μL urine diluted to 2 mM creatinine
 - Incubate with heparinase II, chondroitinase B and keritinase II for 2 h at 30°C
 - Add 15 μL of 150 mM EDTA (pH7.0)
 - Add 125 ng of the internal standard, 4UA- 2S-GlcNCOEt-6S
 - Boil for 5 min to precipitate proteins, centrifuge
 - Apply supernatant to Amicon Ultra 10 kD centrifugal filter (Millipore) and centrifuge
 - Analyse filtrate by UPLC-MS/MS

UPLC-MS/MS analysis

- Waters Quattro Premier XE (tandem) mass spectrometer with Acquity UPLC system
- Thermo Hypercarb HPLC column (100 × 2.1 mm, 5 μ m)
- Buffer A: 10 mM NH₄HCO₃ (pH 10)
- Elute with buffer B: acetonitrile gradient of 0% to 20%
- Total run time 7 minutes

Analysis of disaccharides

• Calibration curve of each disaccharide with 4UA-2S-GlcNCOEt-6S as internal standard

 Sum all disaccharides and report as total HS, DS and KS

- D0A0
- D0S0
- D0A6 and D2A0
- D2SO and D0S6
- D0a4
- D0a10
- g0A6
- g6A6
- D2S6

HS

- **D0A0**
- DOSO
- DOA6 and D2A0
- D2S0 and D0S6
- D0a4
- D0a10
- g0A6
- g6A6
- D2S6

- **DOAO**
- DOSO
- DOA6 and D2A0
- D2SO and D0S6
- D0a4
- D0a10
- g0A6
- g6A6
- D2S6

<mark>HS</mark>

DS

- **DOAO**
- DOSO
- DOA6 and D2A0
- D2SO and D0S6
- D0a4
- D0a10
- g0A6
- <mark>g6A6</mark>

KS

HS

• D2S6

- **D0A0**
- DOSO
- DOA6 and D2A0
- D2SO and D0S6
- <mark>D0a4</mark>
- <mark>D0a10</mark>
- g0A6
- <mark>g6A6</mark>

DS

KS

HS

D2S6 HS and Heparin

If D2S6/D0A0 >0.8 exogenous heparin is possible

Practicalities

- Despite sample cleanup, after 20-30 urine samples peaks start shifting (less retention)
- Column needs to be reequilibrated by rinsing with buffer A
- Not a problem with plasma/CSF (under development)

Reproducibility

	HS	DS	KS
Level 1	ng/ml	ng/ml	ng/ml
Average	833	175	1017
SD	98	19	111
vc %	11.8	10.9	10.9
Level 2	ng/ml	ng/ml	ng/ml
Average	1592	1263	2552
SD	160	153	236
vc %	10.0	12.1	9.3

- Control samples
- Two levels
- N=30

• Variation is quite high but differences between patients and controls are much larger

Total GAGs vs DMB test

Clinical validation

Performance

 Test is much better, especially for therapy monitoring
 One MPS | Scheie patient

Conclusion

- Developed screening assay for mucopolysaccharidoses and mucolipidoses
- Better sensitivity and specificity than DMBtest + replaces GAGs electrophoresis
- Well suited as a first diagnostic test for all MPS subtypes

Acknowledgements

A Multiplex Assay for the Diagnosis of Mucopolysaccharidoses and Mucolipidoses

Eveline J. Langereis¹, Tom Wagemans^{1,2}, Wim Kulik², Dirk J. Lefeber³, Henk van Lenthe², Esmee Oussoren⁴, Ans T. van der Ploeg⁴, George J. Ruijter⁵, Ron A. Wevers³, Frits A. Wijburg¹*, Naomi van Vlies^{1,2}

Heleen ten Brinke

PMID: 26406883

Questions?

Thank you for your attention!