Acylcarnitine measurement in blood spots: methodological aspects, problems and pitfalls with reference to the ERNDIM QA scheme

Charles Turner

WellChild Laboratory

Guy’s Hospital (Evelina Childrens Hospital, St Thomas’)
Acylcarnitine measurement in blood spots
ERNDIM QA scheme

- Acylcarnitine analysis
- Methodological aspects
- Overview of ERNDIM QA Scheme
- Problems and Pitfalls
Acylcarnitine analysis

- Electrospray MSMS
 - Precursor ion scan, m/z 85
- Blood spots/plasma/serum
- Rapid analysis
 - Flow injection analysis
 - Simultaneous acquisitions for aminoacids etc
- Range of disorders
 - Organic acidaemias, fatty acid oxidation disorders
 - Particularly useful for long chain fat ox
 - LCHADD, VLCADD

Acylcarnitine analysis

Quality control

“In –house”

stable isotope internal standards

quantitation - MRM
Octanoyl carnitine within run precision profile: MRM v Scan

![Graph showing CV% vs. Blood spot octanoyl carnitine µmol/l with MRM and Scan Data]

- MRM data
- Scan Data
Acylcarnitine measurement in blood spots
ERNDIM QA scheme

Methodological aspects

Butylation v direct assay

Questionnaire on 1st circulation
34/35 – butylation
1/35 - direct
Acylcarnitines butylation

\[\text{RCOO} \quad \text{H} \]

\[
(\text{CH}_3)_3\text{N} \quad \text{CH}_2 \quad \text{CH} \quad \text{CH} \quad \text{COOH}
\]

Butylation

\[
\text{RCOO} \quad \text{H}
\]

\[
(\text{CH}_3)_3\text{N} \quad \text{CH}_2 \quad \text{CH} \quad \text{CH} \quad \text{COOC}_4\text{H}_8
\]
Acylcarnitines butylated fragmentation

RCOO H

(CH₃)₃N —CH₂—CH —CH— COOC₄H₈

-RCOOH
-(CH₃)₃N
-C₄H₈

[CH₂=CH —CH— COOH]⁺

(m/z 85)
Acylcarnitines underivatised fragmentation

\[
\begin{align*}
\text{RCOO} & \quad \text{H} \\
(CH_3)_3N & \quad CH_2 \quad CH \quad CH \quad \text{COOH} \\
\text{CID} & \quad -\text{RCOOH} \\
& \quad -(CH_3)_3N \\
[CH_2=CH & \quad CH \quad \text{COOH}]^+ \\
& \quad (m/z 85)
\end{align*}
\]
Acylcarnitine measurement in blood spots
ERNDIM QA scheme

Need for scheme?

CDC – excellent quantitative scheme
Spiked blood samples
Not specific for acylcarnitines
More suitable for control of neonatal screening programmes
No free carnitine
Acylcarnitine measurement in blood spots
ERNDIM QA scheme

Need for scheme?

Personal

Methodological

Butylated v direct

Offered to set-up pilot for 1 year if sufficient interest
Questionnaire to see what users wanted
Acylcarnitine analysis
Quality control

ERNDIM

Clinical material (blood spot/serum/plasma)

Interpretative (qualitative/quantitative)

Learning exercise

Accreditation

Model: urine organic acid scheme
Acylcarnitine analysis
ERNDIM QA scheme

ERNDIM users canvassed

Over 30 laboratories expressed an interest
By the dispatch date, 4th April 2003 45 laboratories registered

Problems of blood volume and sample transport scheme for plasma/serum excluded
Blood spots from real clinical cases

Quantitative special assays serum/urine includes free carnitine
Acylcarnitine measurement in blood spots
ERNDIM QA scheme

Initially 30 laboratories expressed an interest

2003 45 laboratories registered
2004 59 laboratories registered
2005 67 laboratories registered
Acylcarnitine measurement in blood spots
ERNDIM QA scheme

Patients
Presenting to the metabolic service at Guy’s Hospital
(now Evelina Childrens Hospital, St Thomas’s)
Diagnoses confirmed by enzymology or DNA sequencing
Routine blood sampling – written informed consent
(patient/parent) obtained for use of excess blood for
quality control purposes – authorised by the chairman of
the Guy’s Hospital Ethical Committee

Scheme participants encouraged to submit samples
1 donor so far + 2 recent offers
Acylcarnitine measurement in blood spots
ERNDIM QA scheme

Samples

Lithium heparin anti-coagulated whole blood
40µl aliquots spotted onto Schleicher & Schuell 903 paper
Dried for 24h at RT before packing and despatch
Any delay stored at –80°C

Current requirement for 1 circulation
approximately 4ml liquid whole blood
70+ dried blood spots
Acylcarnitine measurement in blood spots
ERNDIM QA scheme

6 circulations to date

April 2003 – 45 sent, 35 returns (19 by due date)
January 2004 – 45 sent, 32 returns (25 by due date)
July 2004 – 59 sent, 41 returns (38 by due date)
Nov 2004-60 sent, 42 returns (38 by due date)
May 2005 - 67 sent, 53 returns (45 by due date)
Nov 2005- 67 sent, due date not yet passed
5b was from diabetic patient hypoglycaemic due to insulin overdose
Others from healthy subjects
Most respondents reported acylcarnitine profile as normal
Many suggested further tests
ERNDIM QA Scheme
MCADD
Samples 3a, 5a

3a 3y old female, seizures and developmental delay
39/41 respondents noted a high excretion of octanoylcarnitine
27/39 respondents commented on raise C₆, C₁₀, and/or C₁₀:₁. 24 noted a low or low normal free carnitine
32 labs quantitative C₈ – median 1.00µmol/l (0.51-2.26)
39 labs suggested medium chain acylCoA dehydrogenase deficiency as the diagnosis. 1 normal and 1 carnitine transporter defect.

5a 3y old male, left side unresponsive to stimuli
53/53 respondents reported raised octanoyl carnitine and suggested MCADD as the probable diagnosis.
42 reported quantitative values (median 1.01, range 0.52-2.43micromol/l).
35 respondents commented upon the low free carnitine (31 gave quantitative results: median 8.4, range 4.4-32.4micromol/l),
24 reported a raised C10:1 carnitine and 16 a raised C6 carnitine.
Acylcarnitine analysis
ERNDIM QA scheme
Sample 3a
Acylcarnitine analysis
ERNDIM QA scheme
Sample 5a

+Prec (85.00): 0.668 to 1.303 min from Sample 22 (5a Mcadd BS) of Carnscan 2006-May-13.wiff (Turbo Spray), Smoothed
Max. 4.8e4 cps.
ERNDIM QA Scheme
Glutaric Aciduria Type 1
Samples 2a, 5c

2a 11 month old male, collapse following intercurrent illness, large head with frontal bossing
- GlutarylCoA dehydrogenase deficiency (type 1 glutaric aciduria) – enzyme confirmed
- Blood spot/plasma acylcarnitines consistently normal
- Urine organic acids - only once was 3OHglutarate suspicious
- 32/32 labs reported an essentially normal profile
- Only 8 respondents suggested further investigation to exclude type 1 glutaric aciduria

A normal acylcarnitine result does not exclude type 1 glutaric aciduria
Acylcarnitine analysis
ERNDIM QA scheme
Sample 2a

+Prec (85.00): 0.468 to 0.835 min from Sample 39 (BS 2a) of Carn 2004-Jan-12.wiff (Turbo Spray) Max. 3.4e4 cps.
5c 3y old male, intercurrent infection, altered consciousness, hypoglycaemia

52/53 ^ C5-dicarboxyl-carnitine and suggested a diagnosis of glutaryl-CoA-dehydrogenase deficiency.

40 quantitative results (median 1.2, range 0.39-3.1micromol/l)
34 quoted an upper limit of normal (median 0.15, range 0.03-0.5micromol/l).

42 suggested followup tests, mainly urine organic acids & enzyme assay
17 respondents made suggestions for clinical management
1 respondent reported the sample as normal.

High awareness of GA1, unlikely to be missed if metabolite present
Acylcarnitine analysis
ERNDIM QA scheme
Sample 5c

+Prec (85.00): 0.668 to 1.270 min from Sample 24 (5c GA1 BS) of Carnscan 2005-May-13.wiff (Turbo Spray), Smoothed

Max. 7.7e4 cps.
Acylcarnitine analysis
ERNDIM QA scheme
Sample 2c

2month old female, Reye-like illness
Very long chain acylCoA dehydrogenase deficiency (VLCADD) – enzyme and mutation analysis confirmed

- 16/32 respondents reported increased tetradecenoylcarnitine (C_{14:1}) and 12/16 provided quantitation (median 0.35µmol/l, 0.19-0.55), laboratory normal ranges, UL median 0.22, 0.07-0.55
- All 16 suggested VLCADD as the diagnosis
- 16 did not suggest VLCADD or comment on C_{14:1} but 5/16 supplied scans in which peaks at m/z 370 (direct) and m/z 426 (butylated) were apparent
- 7/16 provided quantitation (median 0.27µmol/l, 0.09-0.38) – within the laboratory normal ranges, UL median 0.80, 0.54-1.07

Patient in recovery phase may not show gross elevation of C14:1
Variation in normal ranges
Acylcarnitine analysis
ERNDIM QA scheme
Sample 2c

C14:1

+Prec (85.00): 0.468 to 0.835 min from Sample 41 (BS 2c) of Carn 2004-Jan-12.wiff (Turbo Spray) Max. 3.3e4 cps.
VLCADD when unwell
Acylcarnitine analysis
ERNDIM QA scheme
Sample 4b

6 month old female, currently well. History of acute collapse at 4 days of age with apnoea, profound metabolic acidosis, hypoglycaemia, left ventricular hypertrophy

MalonylCoA decarboxylase deficiency

Increased malonylcarnitine
Acylcarnitine analysis
ERNDIM QA scheme
Sample 4b

- 20/42 malonic aciduria (malonyl CoA carboxylase deficiency)
 - $^{13}C_3$DC, m/z 248 underivatised, m/z 360 butylated).
 - 15 quantitative values (median 1.1, range 0.35-2.2 micromol/l),
 - 12 gave reference ranges (upper limit of normal: median 0.11, range 0.05-0.8 micromol/l).

- 22 respondents did not suggest malonic aciduria
 - 11 supplied spectra of butylated sample in which the peak at m/z 360 was clearly visible.
 - 3 supplied MRM acquisition data which did not include malonyl carnitine.
 - 4 described the sample as normal
Acylcarnitine analysis
ERNDIM QA scheme
Sample 4b

+Prec (85.00): 0.368 to 0.835 min from Sample 3 (Malonic) of EQC BS 2004-Nov-23.wiff (Turbo Spray)
Other Diagnoses

- Propionic acidaemia
- Isovalericacidaemia
- Carnitine transporter defect

Clear acylcarnitine profiles
Majority of laboratories made diagnoses
Summary of ERNDIM QA results

- Normal
 - Most labs report normal scans
 - Demonstrates difficulties of ruling out metabolic disease with single test
- MCADD, IVA, Propionic, Carnitine transporter
 - Clear diagnoses, no difficulty for most labs
- Methylmalonic
 - All labs pick up raised C3, C4DC less easy
Summary of ERNDIM QA results

- **Malonic**
 - Rare disorder not recognised by some
 - Some labs using MRM acquisition only did not include malonyl carnitine in panel

- **VLCADD**
 - Minor elevation of C14:1 in treated patients
 - Issues with normal ranges

- **GA1**
 - Some patients do not generate metabolites
 - When C5DC present well detected
 - No difference between butylators & non-butylators
Acylcarnitine analysis
Future perspectives

Technology

Greater sensitivity

Routine product ion scanning

Consolidation not revolution
Acylcarnitine analysis
Future perspectives

Use of electrospray MSMS more effectively and efficiently for diagnosis

Clinically targeted

Hyperammonaemia
Hypoglycaemia
Storage disorders
Liver failure
etc
Conclusions

- Acylcarnitine analysis
 - integral part of acute biochemical genetics laboratory investigation

- Butylation vs non-butylation
 - No clear diagnostic advantages either way
 - Underivatised simpler and faster for acute
 - More robust for population screening

- ERNDIM QA scheme
 - Real samples allow labs to build up experience of clinical variation
 - Useful forum to pool knowledge and share insight
Acknowledgements

Neil Dalton

The patients and their families, other labs who have supplied samples

The clinical and laboratory staff at Guy’s
Dr Mike Champion and Jane Gick

The WellChild Trust
Charitable Foundation Guy’s & St Thomas’ Hospitals
Guy’s & St Thomas’ NHS Trust
Acylcarnitine analysis
ERNDIM QA scheme
Normal Samples

1a 49y old male, fatigue & muscle cramps: normal
 34/36 labs reported normal, 27 labs suggested no further action

3b 50y old male, mild peripheral neuropathy, increased CK
Otherwise healthy subject with Charcot-Marie Tooth syndrome
 31/41 respondents considered the profile normal
 9/41 commented on elevated long chain acylcarnitines – 5 concluding
 probably normal, with 2 offering other tests.
 2 LCHAD, 1 CPT-2 and 1 VLCADD, 1 ^ C3 & C4DC - MMA

4c 16y male, vacant episodes: no known metabolic disease
 38/42 normal, 2 MADD, 1^ C3, 1 low carnitine

5b 31y old female, episodes of hypoglycaemia
 44/53 normal, 7 mentioned LCFAO disorders not excluded if well
 1 respondent suggested paired plasma insulin and glucose.
 5 ^ C5OH carnitine 1^ C3 and 1 reduced C12 and C16 carnitines, both
 suggested repeating acylcarnitine analysis on plasma.